

Stand: 18. August 2008

http://www.iazd.uni-hannover.de/~windelberg/teach/ing

25 Fast-Fourier-Transformation (FFT)

FFT

Als "Harmonische Analyse" oder "Fast Fourier Transformation (FFT)" wird ein Verfahren zur näherungsweisen Berechnung der Fourier-Koeffizienten bezeichnet.

Es seien $(2 \cdot m)$ Messpunkte (x(i), y(i)) mit $i = 0, \ldots, (2 \cdot m - 1)$ mit der Bedingung x(i+1) - x(i) = x(i) - x(i-1) für $i = 1, \ldots, (2 \cdot m - 2)$ (d.h. gleiche Abstände der x-Komponenten) gegeben. P sei die angenommene Periodenlänge. Dadurch entstehen gleich grosse Teilintervalle der Länge $T = \frac{P}{(2 \cdot m)}$. (Günstig ist es, das Intervall in 12, 24, 36 oder 72 Teilintervalle zu zerlegen, um Symmetrieeigenschaften auszunutzen.) Dann entsteht die trigonometrische Funktion

$$f(x) = a_0 + \sum_{n=1}^{n=m-1} \left(a_n \cdot \cos(\frac{2 \cdot \pi}{P} \cdot n \cdot x) + b_n \cdot \sin(\frac{2 \cdot \pi}{P} \cdot n \cdot x) \right) + a_m \cdot \cos(\frac{2 \cdot \pi}{P} \cdot m \cdot x)$$

mit den Koeffizienten ist

$$a_{0}: = \frac{1}{2 \cdot m} \cdot \sum_{i=0}^{2 \cdot m-1} y(i)$$

$$a_{m}: = \frac{1}{2 \cdot m} \cdot \sum_{i=0}^{2 \cdot m-1} y(i) \cdot \cos(\frac{2 \cdot \pi}{P} \cdot i \cdot \pi)$$

$$a_{n}: = \frac{1}{m} \cdot \sum_{i=0}^{2 \cdot m-1} y(i) \cdot \cos(\frac{2 \cdot \pi}{P} \cdot \frac{n}{m} \cdot i \cdot \pi) \quad \text{für} \quad n = 1, 2, \dots, (m-1)$$

$$b_{n}: = \frac{1}{m} \cdot \sum_{i=0}^{2 \cdot m-1} y(i) \cdot \sin(\frac{2 \cdot \pi}{P} \cdot \frac{n}{m} \cdot i \cdot \pi) \quad \text{für} \quad n = 1, 2, \dots, (m-1)$$

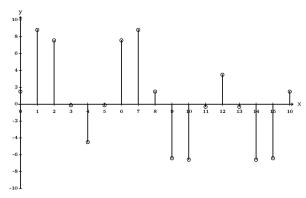
Aufgabe 25.1

Das Intervall von 0 bis $P=2\cdot\pi$ werde unterteilt in $2\cdot m=16$ gleich grosse Teilintervalle der Länge $T=\frac{P}{16}$. Es seien an den Punkten (x(i),y(i)) mit $i=0,\ldots,(2\cdot m-1)$ folgende "Messpunkte" bestimmt:

i	x(i)	y(i)	i	x(i)	y(i)	
0	$0 \cdot T$	1.500	8	$8 \cdot T$	1.500	
1	$1 \cdot T$	8.822	9	$9 \cdot T$	-6.408	
2	$2 \cdot T$	7.571	10	$10 \cdot T$	-6.571	
3	$3 \cdot T$	-0.114	11	$11 \cdot T$	-0.300	$T = \frac{2 \cdot \pi}{16}$
4	$4 \cdot T$	-4.500	12	$12 \cdot T$	3.500	10
5	$5 \cdot T$	-0.114	13	$13 \cdot T$	-0.300	
6	$6 \cdot T$	7.571	14	$14 \cdot T$	-6.571	
7	$7 \cdot T$	8.822	15	$15 \cdot T$	-6.408	

Bestimmen Sie die Fourierkoeffizienten. Zeichnen Sie 16 Punkte sowie die (periodische) Kurve durch diese Punkte.

Lösung zu Aufgabe 25.1:1).



Aufgabe 25.1: 16 Meßpunkte: Welche periodische Funktion geht durch diese Punkte?

Wir verwenden das folgende MAPLE-Programm zu Bestimmung der FFT-Koeffizienten:

```
FFT: Aufgabe 25.1:
> m:=8: P:=2*Pi:
> for i from 0 by 1 to 2*m-1 do
   x(i):=2*Pi/(2*m)*i:
   y(i):=1/2+3*sin(x(i))+cos(2*x(i))+7*sin(3*x(i)):
  print(i," &", evalf(y(i)))
> s0:=0: for i from 0 by 1 while i<2*m do s0:=s0+y(i) od:
    a0:=1/2/m*s0;
> s0:=0: for i from 0 by 1 while i<2*m do s0:=s0+y(i)*cos(2*Pi/P*i*Pi)
    am:=evalf(1/2/m*s0);
> for n from 1 to m-1 do s0:=0: for i from 0 by 1 while i<2*m do
    s0:=s0+y(i)*cos(2*Pi/P*n/m*i*Pi) od:
    a(n):=1/m*s0 od;
> for n from 1 to m-1 do s0:=0: for i from 0 by 1 while i<2*m do
    s0:=s0+y(i)*sin(2*Pi/P*n/m*i*Pi) od:
    b(n):=1/m*s0 od;
```

$$f(x) = 0.5 + 3 \cdot \sin(x) + \cos(2 \cdot x) + 7 \cdot \sin(3 \cdot x)$$

entnommen: Dazu wurde das Intervall von 0 bis $P=2\cdot\pi$ unterteilt in $2\cdot m=16$ gleich grosse Teilintervalle der Länge $T=\frac{P}{16}$. Dann ergaben sich an den Punkten (x(i),y(i)) mit $i=0,\ldots,(2\cdot m-1)$ die oben angegebenen "Meßpunkte"

¹) Zur Kunstruktion der "Meßpunkte": sie wurden der Funktion

Dann ergeben sich die Koeffizienten

a_0	=	0.500			
a_1	=	-0.000	b_1	=	3.000
a_2	=	1.000	b_2	=	0.000
a_3	=	0.000	b_3	=	7.000
a_4	=	-0.000	b_4	=	0.000
a_5	=	-0.000	b_5	=	0.000
a_6	=	0.000	b_6	=	0.000
a_7	=	0.000	b_7	=	0.000
a_8	=	-0.000			

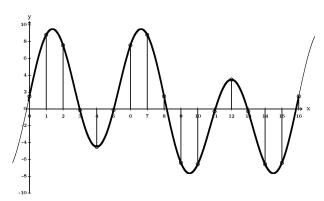
Die resultierende Funktion f(x) lautet dann wegen $P = 2 \cdot \pi$:

$$f(x) = a_0 + \sum_{n=1}^{n=7} (a_n \cdot \cos(n \cdot x) + b_n \cdot \sin(n \cdot x) + a_8 \cdot \cos(8 \cdot x))$$

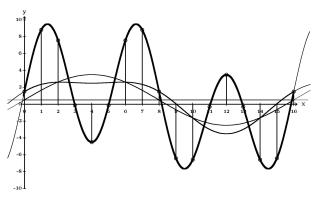
= 0.5 + 3 \cdot \sin(x) + \cos(2 \cdot x) + 7 \cdot \sin(3 \cdot x)

Die nullte Näherung ist dann die Funktion $f_0(x) = 0.5$, die erste Näherung lautet $f_1(x) = f_0(x) + 3 \cdot \sin(x)$, die zweite Näherung lautet $f_2(x) = f_1(x) + \cos(2 \cdot x)$,

die dritte Näherung lautet $f_3(x) = f_2(x) + 7 \cdot \sin(3 \cdot x)$.



Aufgabe 25.1: Funktion $f(x) = 0.5 + 3 \cdot \sin(x) + \cos(2 \cdot x) + 7 \cdot \sin(3 \cdot x)$ durch 16 Punkte



Aufgabe 25.1: Funktion $f(x) = 0.5 + 3 \cdot \sin(x) + \cos(2 \cdot x) + 7 \cdot \sin(3 \cdot x)$ mit Näherungskurven

Aufgabe 25.2

Was geschieht, wenn der Periodenbeginn oder die Periodenlänge P nicht "richtig" gewählt wird?

Welche Kurve ergibt sich (aus der Berechnung der jeweiligen Fourierkoeffizienten), wenn anstelle der 16 Messwerte aus Aufgabe 89)

- a) nur die ersten 12 Messwerte (i = 0,, 11)
- b) nur die letzten 12 Messwerte (i = 4, ..., 15)

zur Bestimmung der resultierenden Funktion f(x) ausgewählt werden?

Aufgabe 25.2a)				Aufgabe 25.2b)				
i	x(i)	y(i)		i	x(i)	y(i)		
0	$0 \cdot T$	1.500		0	$0 \cdot T$	-4.500		
1	$1 \cdot T$	8.822		1	$1 \cdot T$	-0.114		
2	$2 \cdot T$	7.571		2	$2 \cdot T$	7.571		
3	$3 \cdot T$	-0.114		3	$3 \cdot T$	8.822	$T = \frac{2 \cdot \pi}{12}$	
4	$4 \cdot T$	-4.500		4	$4 \cdot T$	1.500	12	
5	$5 \cdot T$	-0.114		5	$5 \cdot T$	-6.408		
6	$6 \cdot T$	7.571		6	$6 \cdot T$	-6.571		
7	$7 \cdot T$	8.822		7	$7 \cdot T$	-0.300		
8	$8 \cdot T$	1.500		8	$8 \cdot T$	3.500		
9	$9 \cdot T$	-6.408		9	$9 \cdot T$	-0.300		
10	$10 \cdot T$	-6.571		10	$10 \cdot T$	-6.571		
11	$11 \cdot T$	-0.300		11	$11 \cdot T$	-6.408		

Zeichnen Sie jeweils die Kurvenpunkte und die Kurven durch diese Punkte.

Lösung der Aufgabe 25.2a)

```
FFT: Aufgabe 25.2a)
> m:=6: P:=2*Pi:
>
> s0:=0: for i from 0 by 1 while i<2*m do s0:=s0+y(i) od:
    a0:=1/2/m*s0;
> s0:=0: for i from 0 by 1 while i<2*m do s0:=s0+y(i)*cos(2*Pi/P*i*Pi) od:
    am:=evalf(1/2/m*s0);
> for n from 1 to m-1 do s0:=0: for i from 0 by 1 while i<2*m do
    s0:=s0+y(i)*cos(2*Pi/P*n/m*i*Pi) od:
    a(n):=1/m*s0 od;
> for n from 1 to m-1 do s0:=0: for i from 0 by 1 while i<2*m do
    s0:=s0+y(i)*sin(2*Pi/P*n/m*i*Pi) od:
    b(n):=1/m*s0 od;</pre>
```

Es ergeben sich wegen m=6 die Koeffizienten

a_0 ,	a_1 , .	\dots, a_6 ur	d b	$_{1},b_{2},$	a_1, \ldots, b_5
$\overline{a_0}$	=	1.482			
a_1	=	-0.705	b_1	=	2.240
a_2	=	4.201	b_2	=	5.514
a_3	=	-1.679	b_3	=	-1.018
a_4	=	-0.844	b_4	=	-0.301
a_5	=	-0.652	b_5	=	-0.111
a_6	=	-0.303			

Es wird angenommen, dass die Periodenlänge auch hier $P=2\cdot\pi$ beträgt; daher lauten die Näherungsfunktionen:

$$f_0(x) = 1.482$$

$$f_1(x) = f_0(x) - 0.705 \cdot \cos(x) + 2.240 \cdot \sin(x)$$

$$f_2(x) = f_1(x) + 4.201 \cdot \cos(2 \cdot x) + 5.514 \cdot \sin(2 \cdot x)$$

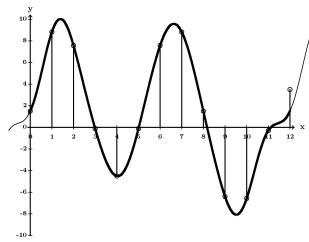
$$f_3(x) = f_2(x) - 1.679 \cdot \cos(3 \cdot x) - 1.018 \cdot \sin(3 \cdot x)$$

$$f_4(x) = f_3(x) - 0.844 \cdot \cos(4 \cdot x) - 0.301 \cdot \sin(4 \cdot x)$$

$$f_5(x) = f_4(x) - 0.652 \cdot \cos(5 \cdot x) - 0.111 \cdot \sin(5 \cdot x)$$

$$f_6(x) = f_5(x) - 0.303 \cdot \cos(6 \cdot x)$$

(1)



Aufgabe 25.2a): Fourier-Funktion f(x) durch die ersten 12 Punkte Ergebnis des FFT-Verfahrens: Kurve durch die ersten 12 Punkte:

$$f_0(x) = 1.482$$

$$f_1(x) = f_0(x) - 0.705 \cdot \cos(x) + 2.240 \cdot \sin(x)$$

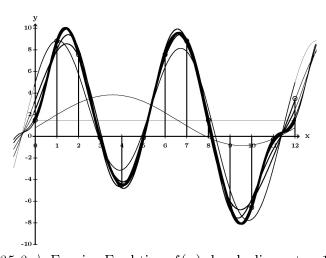
$$f_2(x) = f_1(x) + 4.201 \cdot \cos(2 \cdot x) + 5.514 \cdot \sin(2 \cdot x)$$

$$f_3(x) = f_2(x) - 1.679 \cdot \cos(3 \cdot x) - 1.018 \cdot \sin(3 \cdot x)$$

$$f_4(x) = f_3(x) - 0.844 \cdot \cos(4 \cdot x) - 0.301 \cdot \sin(4 \cdot x)$$

$$f_5(x) = f_4(x) - 0.652 \cdot \cos(5 \cdot x) - 0.111 \cdot \sin(5 \cdot x)$$

$$f_6(x) = f_5(x) - 0.303 \cdot \cos(6 \cdot x)$$



Aufgabe 25.2a): Fourier-Funktion f(x) durch die ersten 12 Punkte

Näherungskurven aus dem FFT-Verfahren: für die ersten 12 Punkte:

$$f_0(x) = 1.482$$
: (Strichstärke 1)

- 1. Näherung: $f_1(x) = f_0(x) 0.705 \cdot \cos(x) + 2.240 \cdot \sin(x)$ (Strichstärke 2)
- 2. Näherung $f_2(x) = f_1(x) + 4.201 \cdot \cos(2 \cdot x) + 5.514 \cdot \sin(2 \cdot x)$ (Strichstärke 3)
- 3. Näherung: $f_3(x) = f_2(x) 1.679 \cdot \cos(3 \cdot x) 1.018 \cdot \sin(3 \cdot x)$ (Strichstärke 4)
- 4. Näherung: $f_4(x) = f_3(x) 0.844 \cdot \cos(4 \cdot x) 0.301 \cdot \sin(4 \cdot x)$ (Strichstärke 5)
- 5. Näherung: $f_5(x) = f_4(x) 0.652 \cdot \cos(5 \cdot x) 0.111 \cdot \sin(5 \cdot x)$ (Strichstärke 6)

Lösung der Aufgabe 25.2b)

```
FFT: Aufgabe 25.2b)
> m:=6: P:=2*Pi:
>
> s0:=0: for i from 4 by 1 while i<16 do s0:=s0+y(i) od:
    a0:=1/2/m*s0;
> s0:=0: for i from 4 by 1 while i<16 do s0:=s0+y(i)*cos(2*Pi/P*i*Pi) od:
    am:=evalf(1/2/m*s0);
> for n from 1 to m-1 do s0:=0: for i from 4 by 1 while i<16 do
    s0:=s0+y(i)*cos(2*Pi/P*n/m*(i-4)*Pi) od:
    a(n):=1/m*s0 od;
> for n from 1 to m-1 do s0:=0: for i from 4 by 1 while i<16 do
    s0:=s0+y(i)*sin(2*Pi/P*n/m*(i-4)*Pi) od:
    b(n):=1/m*s0 od;</pre>
```

Es ergeben sich wegen m=6 die Koeffizienten

a_0 ,	a_1 ,.	\dots, a_6 ur	nd b	$_{1},b_{2},$	a_1, \ldots, b_5
$\overline{a_0}$	=	-0.815			
a_1	=	0.039	b_1	=	3.288
a_2	=	-4.868	b_2	=	4.120
a_3	=	1.012	b_3	=	-1.489
a_4	=	0.178	b_4	=	-0.540
a_5	=	-0.015	b_5	=	-0.217
a_6	=	-0.030			

Auch hier wird angenommen, dass die Periodenlänge auch hier $P=2\cdot\pi$ beträgt; daher lauten die Gleichung für die in den Bildern eingezeichneten Näherungsfunktionen:

$$f_0(x) = -0.815$$

$$f_1(x) = f_0(x) + 0.039 \cdot \cos(x) + 3.288 \cdot \sin(x)$$

$$f_2(x) = f_1(x) - 4.868 \cdot \cos(2 \cdot x) + 4.120 \cdot \sin(2 \cdot x)$$

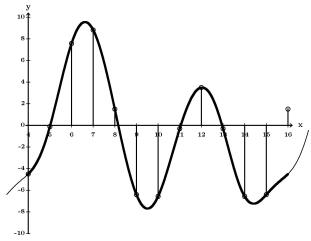
$$f_3(x) = f_2(x) + 1.012 \cdot \cos(3 \cdot x) - 1.489 \cdot \sin(3 \cdot x)$$

$$f_4(x) = f_3(x) + 0.178 \cdot \cos(4 \cdot x) - 0.540 \cdot \sin(4 \cdot x)$$

$$f_5(x) = f_4(x) - 0.015 \cdot \cos(5 \cdot x) - 0.217 \cdot \sin(5 \cdot x)$$

$$f_6(x) = f_5(x) - 0.030 \cdot \cos(6 \cdot x)$$

(2)



Aufgabe 25.2b): Fourier-Funktion f(x) durch die letzten 12 Punkte

$$f_0(x) = -0.815$$

$$f_1(x) = f_0(x) + 0.039 \cdot \cos(x) + 3.288 \cdot \sin(x)$$

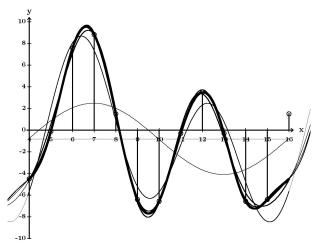
$$f_2(x) = f_1(x) - 4.868 \cdot \cos(2 \cdot x) + 4.120 \cdot \sin(2 \cdot x)$$

$$f_3(x) = f_2(x) + 1.012 \cdot \cos(3 \cdot x) - 1.489 \cdot \sin(3 \cdot x)$$

$$f_4(x) = f_3(x) + 0.178 \cdot \cos(4 \cdot x) - 0.540 \cdot \sin(4 \cdot x)$$

$$f_5(x) = f_4(x) - 0.015 \cdot \cos(5 \cdot x) - 0.217 \cdot \sin(5 \cdot x)$$

$$f_6(x) = f_5(x) - 0.030 \cdot \cos(6 \cdot x)$$



Aufgabe 25.2b): Fourier-Funktion f(x) durch die letzten 12 Punkte (i = 4,, 15) mit Näherungskurven

0. Näherung: $f_0(x) = -0.815$ (Strichstärke 1)

- 1. Näherung: $f_1(x) = f_0(x) + 0.039 \cdot \cos(x) + 3.288 \cdot \sin(x)$ (Strichstärke 2)
- 2. Näherung: $f_2(x) = f_1(x) 4.868 \cdot \cos(2 \cdot x) + 4.120 \cdot \sin(2 \cdot x)$ (Strichstärke 3)
- 3. Näherung: $f_3(x) = f_2(x) + 1.012 \cdot \cos(3 \cdot x) 1.489 \cdot \sin(3 \cdot x)$ (Strichstärke 4)
- 4. Näherung: $f_4(x) = f_3(x) + 0.178 \cdot \cos(4 \cdot x) 0.540 \cdot \sin(4 \cdot x)$ (Strichstärke 5)
- 5. Näherung: $f_5(x) = f_4(x) 0.015 \cdot \cos(5 \cdot x) 0.217 \cdot \sin(5 \cdot x)$ (Strichstärke 6)