

Stand: 18. August 2008

http://www.iazd.uni-hannover.de/~windelberg/teach/ing

31 Matrizen und Lineare Gleichungssysteme

Aufgabe 31.1: (Querverteilungsmatrix)

Voraussetzungen

Wir nehmen an, dass wir mit einer Waage

- 40 kg Steine mit einem Durchmesser kleiner als 4 cm und
- 100 kg Steine mit einem Durchmesser größer als $4\,cm$

abgewogen haben. Diese Eigenschaft beschreiben wir vektoriell:

$$\vec{m}_{wahr} := \begin{pmatrix} m_{1,wahr} \\ m_{2,wahr} \end{pmatrix} = \begin{pmatrix} 40 \\ 100 \end{pmatrix}$$

Wir besitzen eine Siebanlage mit der Maschenweite 4 cm, in der wir die 140 kg Steine sieben. Leider ist das Sieb nicht "genau": Es ergeben sich

$$\vec{m}_s := \left(\begin{array}{c} m_{1,s} \\ m_{2,s} \end{array}\right) = \left(\begin{array}{c} 50 \\ 90 \end{array}\right)$$

Können wir den Fehler des Siebes ausgleichen, indem wir den Vektor \vec{m}_{sieb} (linear) so manipulieren, dass die Waage das "richtige" Ergebnis anzeigt, obwohl sie etwas anderes misst?

Vorschlag: Wir suchen eine "Querverteilungs"-Matrix $A = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix}$, so dass gilt

$$\vec{m}_{wahr} := A \cdot \vec{m}_s$$

Bestimmen Sie A.

Lösung von Aufgabe 31.1:

Es wird eine Matrix A gesucht, so dass gilt

$$\vec{m}_{wahr} := A \cdot \vec{m}_s$$

also

$$\vec{m}_{wahr} = \begin{pmatrix} 40\\100 \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2}\\a_{2,1} & a_{2,2} \end{pmatrix} \cdot \begin{pmatrix} 50\\90 \end{pmatrix} = \begin{pmatrix} a_{1,1} \cdot 50 + a_{1,2} \cdot 90\\a_{2,1} \cdot 50 + a_{2,2} \cdot 90 \end{pmatrix}$$

Wir haben also 2 Gleichungen und 4 Unbekannte:

$$40 = a_{1,1} \cdot 50 + a_{1,2} \cdot 90$$

$$100 = a_{2,1} \cdot 50 + a_{2,2} \cdot 90$$

Damit gibt es keine eindeutige Lösung.

kreative Idee:

Was passiert, wenn wir mit unserem Sieb nur eine Sorte Steine wiegen?

Beginnen wir mit dem Sieben der 40 kg Steine mit dem Durchmesser kleiner als 4 cm: wir wiegen 40 kg. Also ist das Sieb doch "genau"?

Nun sieben wir mit dem Sieb die $100\,kg$ Steine mit dem Durchmesser größer als $4\,cm$: es fallen $10\,kg$ durch die $4\,cm$ -Maschen des Siebes, und **nur** $90\,kg$ werden größer $4\,cm$ erkannt: Also soll auch gelten

$$\begin{pmatrix} 0 \\ 100 \end{pmatrix} = \begin{pmatrix} a_{1,1} \cdot 10 + a_{1,2} \cdot 90 \\ a_{2,1} \cdot 10 + a_{2,2} \cdot 90 \end{pmatrix}$$

Damit haben wir unser lineares Gleichungssystem:

	$a_{1,1}$	$a_{1,2}$	$a_{2,1}$	$a_{2,2}$	r.S.	\sum	Regie		
$\overline{(1)}$	50	90	0	0	40	180	1		
(2)	0	0	50	90	100	240		1	
(3)	10	90	0	0	0	100	-5	0	0
(4)	0	0	10	90	100	200			1
(5)		-360	0	0	40	-320	1		
(6)	0	0	50	90	100	240		1	
(7)	0	0	10	90	100	200	0	-1	
(8)		-360	0	0	40	-320			
(9)		0	40	0	0	40			

aus Gleichung (9): $40 \cdot a_{2,1} = 0$, also $a_{2,1} = 0$, also $a_{2,1} = 0$, aus Gleichung (8): $-360 \cdot a_{1,2} = 40$, also $a_{1,2} = -\frac{1}{9}$, aus Gleichung (7): $10 \cdot a_{2,1} + 90 \cdot a_{2,2} = 100$, also $a_{2,2} = \frac{10}{9}$. aus Gleichung (3): $10 \cdot a_{1,1} + 90 \cdot a_{1,2} = 0$, also $a_{1,1} = 1$. Damit erhalten wir die **Querverteilungsmatrix** $a_{1,1} = 1$

$$A = \begin{pmatrix} 1 & -\frac{1}{9} \\ 0 & \frac{10}{9} \end{pmatrix} = \frac{1}{9} \cdot \begin{pmatrix} 9 & -1 \\ 0 & 10 \end{pmatrix}$$

Aufgabe 31.2

Diese Manipulation soll natürlich auch dann "richtig" sein, wenn wir z.B. wiegen:

 $m_{1,wahr}=100\;kg$ der Steine haben einen Durchmesser kleiner als $4\;cm$ $m_{2,wahr}=240\;kg$ der Steine haben einen Durchmesser größer als $4\;cm$

Wenn wir diese Mengen nach dem Sieben mit unserem "ungenauen" Sieb wiegen, so erwarten wir, dass das Ergebnis nicht 100 bzw. 240 kg beträgt. Wie lauten die Messergebnisse $m_{1,s}$ und $m_{2,s}$, auf die wir dann - nach Anwendung der oben gefundenen Querverteilungsmatrix A - die Zahlen 100 und 240 erhalten?

Ist die Summe, also $m_{1,s} + m_{2,s}$, gleich 340?

Lösung von Aufgabe 31.2

Wegen

$$\vec{m}_{wahr} := A \cdot \vec{m}_s \quad \Leftrightarrow \quad A^{-1} \cdot \vec{m}_{wahr} = \vec{m}_s$$

wird die zu A inverse Matrix A^{-1} gesucht.

Dann ist

$$\begin{pmatrix} m_{1,s} \\ m_{2,s} \end{pmatrix} = \vec{m}_s = A^{-1} \cdot \vec{m}_{wahr} = \frac{1}{10} \cdot \begin{pmatrix} 10 & 1 \\ 0 & 9 \end{pmatrix} \cdot \begin{pmatrix} 100 \\ 240 \end{pmatrix} = \frac{1}{10} \cdot \begin{pmatrix} 1240 \\ 2160 \end{pmatrix} = \begin{pmatrix} 124 \\ 216 \end{pmatrix}.$$

Also ist
$$\boxed{m_{1,s} = 124 \, kg}$$
 und $\boxed{m_{2,s} = 216 \, kg}$,

und es gilt
$$m_{1,s} + m_{2,s} = 340 \, kg$$