

Stand: 19. August 2008

http://www.iazd.uni-hannover.de/~windelberg/teach/ing

Mittelwert, Standardabweichung, Normalverteilung 36

Aufgabe:

Es wird vorausgesetzt, dass Sie eine physikalische Grösse n mal gemessen haben. Die Messwerte seien x_1, \ldots, x_n .

Berechnen Sie das arithmetische Mittel μ dieser Messwerte und geben Sie das Intervall an, in dem 95% der Messwerte liegen würden, wenn diese um μ normalverteilt wären.

Lösung der Aufgabe:

Bekannt ist der Begriff der "Normalverteilung" $N(\mu, \sigma^2)$, z.B. aus F+H, Seite 200:

$$N(\mu, \sigma^2) := \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot e^{-\frac{1}{2} \cdot \left(\frac{x - \mu}{\sigma}\right)^2}$$

mit

$$\begin{array}{c|c} \mu & \text{ "Erwartungswert" oder "Mittelwert"} \\ \sigma & \text{ "Standardabweichung"} \\ \sigma^2 & \text{ "Varianz"} \end{array}$$

Um die Genauigkeit einer Messung zu beschreiben, kann z.B.

1. für den Erwartungswert μ das arithmetische Mittel von n Versuchsdaten x_i , also $\mu =$ $\frac{1}{n} \cdot \sum_{i=1}^{n} x_i$

2. für die Varianz
$$\sigma^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (x_i - \mu)^2$$

gewählt werden. Dazu gehört dann die Normalverteilung $N(\mu, \sigma^2)$.

Von dieser Kurve ist bekannt:

Der Flächeninhalt zwischen x-Achse und Kurve beträgt

- 1. im Intervall $[\mu \sigma, \mu + \sigma]$:
- 2. im Intervall $[\mu 2 \cdot \sigma, \mu + 2 \cdot \sigma]$: 95%
- 3. im Intervall $[\mu-3\cdot\sigma,\mu+3\cdot\sigma]$: 99% 1-, 2- und 3- σ -Intervalle

Die Meßgenauigkeit kann dann durch das Intervall $[\mu - 2 \cdot \sigma, \mu + 2 \cdot \sigma]$ beschrieben werden: Falls die Messungen normalverteilt sind, würden 95% aller Messwerte innerhalb dieses Intervalles liegen.

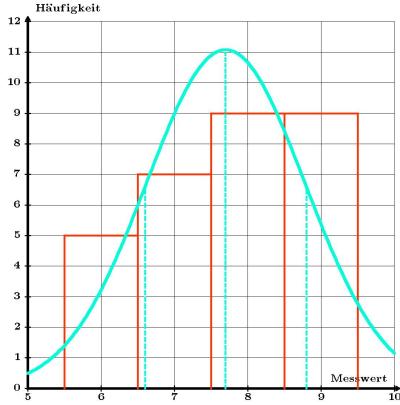
Beipiel: Messwerte, sortiert nach ihrer Grösse:

Messwert	6	6	6	6	6	7	7	7	7	7	7	7	8	8	8
	8	8	8	8	8	8	9	9	9	9	9	9	9	9	9

Dann ist
$$\mu = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i = \frac{1}{30} \cdot (5 \cdot 6 + 7 \cdot 7 + 9 \cdot 8 + 9 \cdot 9) = \frac{1}{30} \cdot (30 + 49 + 72 + 81) = \frac{232}{30} \approx 7.7$$
und
$$\sigma^2 = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - \mu)^2 = \frac{1}{29} \cdot (5 \cdot (6 - 7.7)^2 + 7 \cdot (7 - 7.7)^2 + 9 \cdot (8 - 7.7)^2 + 9 \cdot (9 - 7.7)^2)$$

$$= \frac{1}{29} \cdot (5 \cdot 2.89 + 7 \cdot 0.49 + 9 \cdot 0.09 + 9 \cdot 1.69) = \frac{33.9}{29} \approx 1.17$$

und damit $\sigma=1.08$ Damit würde bei Normalverteilung der Messwerte gelten: 6.5 \leq Messwert \leq 8.9 gilt für 95% aller Messwerte



Die x-Achse ist aufgeteilt in Intervalle: $[5.5, 6.5], [6.5, 7.5], \ldots$ Ein Balkendiagramm (in rot) zeigt die jeweilige Häufigkeit der Messwerte. Der Flächeninhalt der Balken beträgt 30.

Es ergab sich aus den Messwerten das arithmetische Mittel $\mu = 7.7$ und die Standardabweichung $\sigma = 1.08$.

Damit konnte die Normalverteilungskurve für diese Messwerte so gezeichnet werden, dass zwischen der x-Achse und der Kurve der gleiche Flächeninhalt entsteht wie bei dem Balkendiagramm, also 30:

$$y = 30 \cdot \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot e^{-\frac{1}{2} \cdot \left(\frac{x - \mu}{\sigma}\right)^2}$$

Die Zeichnung enthält auch den Mittelwert μ sowie die Fehlergrenzen für 95% einer normalverteilten Messung (jeweils gestrichelt)