

Stand: 18. August 2008

http://www.iazd.uni-hannover.de/~windelberg/teach/ing

4 trigonometrische Funktionen

Aufgabe 4.1: Zeichnen Sie die folgenden Kurven:

4.1a):
$$y = \sin(x), y = \sin(2 \cdot x) \text{ und } y = \sin(\frac{1}{2} \cdot x) \text{ für } 0 < x < 2 \cdot \pi$$

4.1b):
$$y = \cos(x), y = 2 \cdot \cos(x) \text{ und } y = \frac{1}{2} \cdot \cos(x) \text{ für } 0 < x < 2 \cdot \pi$$

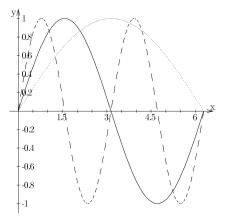
4.1c):
$$y = \tan(x), y = \tan\left(x + \frac{\pi}{6}\right) \text{ und } y = \tan\left(\frac{1}{2} \cdot x + \frac{\pi}{6}\right) \text{ für } 0 < x < 2 \cdot \pi$$

4.1d):
$$y = \cot(x), y = \cot\left(3 \cdot x - \frac{\pi}{2}\right) \text{ und } y = \frac{1}{4} \cdot \cot(2 \cdot x) \text{ für } 0 < x < 2 \cdot \pi$$

4.1e):
$$y = \sin(x)$$
 für $-\pi < x < 3 \cdot \pi$ und $y = \arcsin(x)$

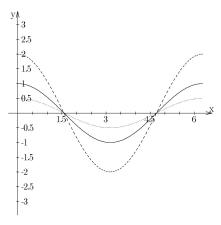
4.1f):
$$y = \cos(2 \cdot x)$$
 für $-\pi < x < 3 \cdot \pi$ und $y = \frac{1}{2} \cdot \arccos(x)$

Lösung 4.1



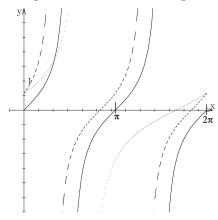
Aufgabe 4.1a)

$$y = \sin(x)$$
 (ausgezogen)
 $y = \sin(2 \cdot x)$ (gestrichelt)
 $y = \sin(\frac{1}{2} \cdot x)$ (gepunktet)



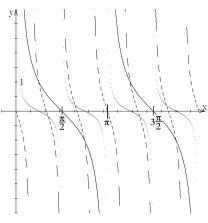
Aufgabe 4.1b)

$$y = \cos(x)$$
 (ausgezogen)
 $y = 2 \cdot \cos(x)$ (gestrichelt)
 $y = \frac{1}{2} \cdot \cos(x)$ (gepunktet)



Aufgabe 4.1c)

$$y = \tan(x)$$
 (ausgezogen)
 $y = \tan\left(x + \frac{\pi}{6}\right)$ (gestrichelt)
 $y = \tan\left(\frac{1}{2} \cdot x + \frac{\pi}{6}\right)$ (gepunktet)

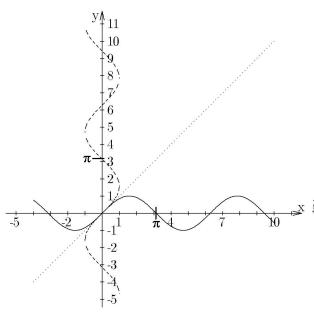


Aufgabe 4.1d)

$$y = \cot(x) \text{ (ausgezogen)}$$

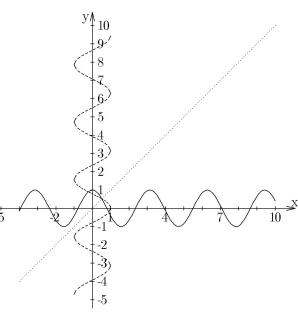
$$y = \cot\left(3 \cdot x - \frac{\pi}{2}\right) \text{ (gestrichelt)}$$

$$y = \frac{1}{4} \cdot \cot(2 \cdot x) \text{ (gepunktet)}$$



Aufgabe 4.1e)

$$y = \sin(x)$$
 (ausgezogen)
 $y = \arcsin(x)$ (gestrichelt)



Aufgabe 4.1f)

$$y = \cos(2 \cdot x)$$
 (ausgezogen)
 $y = \frac{1}{2} \cdot \arccos(x)$ (gestrichelt)

Aufgabe 4.2: Überlagerung von Schwingungen

Bestimmen und zeichnen Sie die Überlagerung der beiden Schwingungen

$$y_1(x) = 2 \cdot \sin\left(2 \cdot x + \frac{2}{3} \cdot \pi\right)$$
 und $y_2(x) = -3 \cdot \cos\left(2 \cdot x - \frac{5}{6} \cdot \pi\right)$

indem Sie eine reelle ZahlA>0und einen Winkel $\varphi~(0\leq\varphi<2\cdot\pi)$ bestimmen mit

$$A \cdot \sin(2 \cdot x + \varphi) = y_1(x) + y_2(x)$$

Lösung 4.2

Nach den Additionstheoremen (F+H, F1) ist für $\spadesuit = 2 \cdot x$ und für $\diamondsuit = \frac{2}{3} \cdot \pi$

$$y_1(x) = 2 \cdot \sin\left(2 \cdot x + \frac{2}{3} \cdot \pi\right) = 2 \cdot \sin(2 \cdot x) \cdot \cos\left(\frac{2}{3} \cdot \pi\right) + 2 \cdot \cos(2 \cdot x) \cdot \sin\left(\frac{2}{3} \cdot \pi\right)$$

Wegen $\cos\left(\frac{2}{3}\cdot\pi\right)=-\frac{1}{2}$ und $\sin\left(\frac{2}{3}\cdot\pi\right)=\frac{1}{2}\cdot\sqrt{3}$ ist dann

$$y_1(x) = -\sin(2 \cdot x) + \sqrt{3} \cdot \cos(2 \cdot x) \tag{1}$$

Entsprechend ist für $\spadesuit = 2 \cdot x$ und für $\lozenge = -\frac{5}{6} \cdot \pi$

$$y_2(x) = -3 \cdot \cos\left(2 \cdot x - \frac{5}{6} \cdot \pi\right) = -3 \cdot \cos(2 \cdot x) \cdot \cos\left(\frac{5}{6} \cdot \pi\right) + \left(-3 \cdot \sin(2 \cdot x) \cdot \sin\left(\frac{5}{6} \cdot \pi\right)\right)$$

Wegen $\cos\left(\frac{5}{6} \cdot \pi\right) = -\frac{1}{2} \cdot \sqrt{3}$ und $\sin\left(\frac{5}{6} \cdot \pi\right) = \frac{1}{2}$ ist dann

$$y_2(x) = \frac{3}{2} \cdot \sqrt{3} \cdot \cos(2 \cdot x) - \frac{3}{2} \cdot \sin(2 \cdot x)$$
 (2)

Damit folgt aus (1) und (2)

$$y_1(x) + y_2(x) = -\frac{5}{2} \cdot \sin(2 \cdot x) + \frac{5}{2} \cdot \sqrt{3} \cdot \cos(2 \cdot x)$$
 (3)

Andererseits ist nach den Additionstheoremen

$$A \cdot \sin(2 \cdot x + \varphi) = A \cdot \sin(2 \cdot x) \cdot \cos(\varphi) + A \cdot \cos(2 \cdot x) \cdot \sin(\varphi)$$

Koeffizientenvergleich liefert

$$A \cdot \cos(\varphi) = -\frac{5}{2} \quad \text{und} \quad A \cdot \sin(\varphi) = \frac{5}{2} \cdot \sqrt{3}$$
 (4)

Bestimmung von A:

Es ist nach dem Pythagoras der Winkelfunktionen

$$A^{2} = A^{2} \cdot \left(\sin^{2}(\varphi) + \cos^{2}(\varphi)\right) = (A \cdot \sin(\varphi))^{2} + (A \cdot \cos(\varphi))^{2} = \frac{25}{4} + \frac{75}{4} = 25 \quad \Rightarrow \quad A = \pm 5$$

Hier wird ohne Beschränkung der Allgemeinheit gewählt: A = 5. Bestimmung von φ : Wegen A = 5 ist nun nach (4)

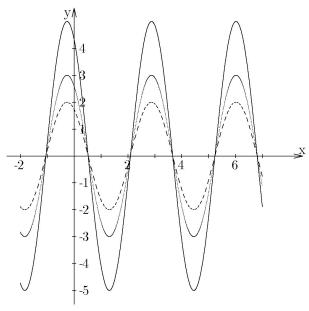
$$5 \cdot \cos(\varphi) = -\frac{5}{2} \text{ und } 5 \cdot \sin(\varphi) = \frac{5}{2} \cdot \sqrt{3} \quad \text{oder} \quad \sin(\varphi) = \frac{1}{2} \cdot \sqrt{3} \text{ und } \cos(\varphi) = -\frac{1}{2} \quad (5)$$

Folglich muss für φ damit auch

$$\tan(\varphi) = \frac{\sin(\varphi)}{\cos(\varphi)} = \frac{-\frac{1}{2} \cdot \sqrt{3}}{\frac{1}{2}} = -\sqrt{3}$$

erfüllt sein.

Also muss gelten $\varphi = -\frac{1}{3} \cdot \pi \pm \pi$. Diese Bedingungen wird von (5) nur erfüllt für $\varphi = \frac{2}{3} \cdot \pi = 120^{\circ}$.



$$\begin{aligned} \mathbf{Aufgabe} \ \mathbf{4.2} \\ y &= 2 \cdot \sin \left(2 \cdot x + \frac{2}{3} \cdot \pi \right) \text{ (gestrichelt)} \\ y &= -3 \cdot \cos \left(2 \cdot x - \frac{5}{6} \cdot \pi \right) \text{ (gepunktet)} \\ y &= A \cdot \sin(2 \cdot x + \varphi) \text{ (ausgezogen) mit } A = 5 \text{ und } \varphi = \frac{2}{3} \cdot \pi \end{aligned}$$

Aufgabe 4.3: (General substitution) (F+H 8.1)

4.3a): Untersuchen Sie, für welche $x \in \mathbb{R}$ die folgende Substitution gültig ist

$$t := \tan\left(\frac{x}{2}\right),$$

wenn für diese folgende Eigenschaften gelten sollen:

$$\sin(x) = \frac{2 \cdot t}{1 + t^2}$$
 , $\cos(x) = \frac{1 - t^2}{1 + t^2}$ und $dx = \frac{2}{1 + t^2} dt$

Lösung 4.3a)

Es ist

$$\frac{2 \cdot t}{1 + t^2} \quad \stackrel{t := \tan\left(\frac{x}{2}\right)}{=} \quad \frac{2 \cdot \tan\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} \quad \stackrel{\tan\left(\mathcal{O}\right)}{=} \quad \frac{\frac{\sin\left(\mathcal{O}\right)}{\cos\left(\frac{x}{2}\right)}}{1 + \frac{\sin^2\left(\frac{x}{2}\right)}{\cos^2\left(\frac{x}{2}\right)}} = \frac{2 \cdot \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)}}{\frac{\cos^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right)}{\cos^2\left(\frac{x}{2}\right)}} \quad \frac{\sin^2\left(\mathcal{O}\right) + \cos^2\left(\mathcal{O}\right) = 1}{\frac{1}{\cos^2\left(\frac{x}{2}\right)}} \quad \frac{2 \cdot \frac{\sin\left(\frac{x}{2}\right)}{\cos^2\left(\frac{x}{2}\right)}}{\frac{1}{\cos^2\left(\frac{x}{2}\right)}} = \frac{2 \cdot \sin\left(\frac{x}{2}\right) \cdot \cos^2\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)} = 2 \cdot \sin\left(\frac{x}{2}\right) \cdot \cos\left(\frac{x}{2}\right)$$

$$\stackrel{\text{Additionstheorem des Sinus}}{=} \quad \sin(x)$$

Ferner ist

$$\frac{1-t^2}{1+t^2} \stackrel{t:=\tan\left(\frac{x}{2}\right)}{=} \frac{1-\tan^2\left(\frac{x}{2}\right)}{1+\tan^2\left(\frac{x}{2}\right)} \stackrel{\tan\left(\heartsuit\right)}{=} \frac{\frac{\sin^2\left(\diamondsuit\right)}{\cos^2\left(\diamondsuit\right)}}{1+\frac{\sin^2\left(\frac{x}{2}\right)}{\cos^2\left(\frac{x}{2}\right)}} = \frac{\frac{\cos^2\left(\frac{x}{2}\right)-\sin^2\left(\frac{x}{2}\right)}{\cos^2\left(\frac{x}{2}\right)}}{\frac{\cos^2\left(\frac{x}{2}\right)+\sin^2\left(\frac{x}{2}\right)}{\cos^2\left(\frac{x}{2}\right)}} = \frac{\frac{\cos^2\left(\frac{x}{2}\right)-\sin^2\left(\frac{x}{2}\right)}{\cos^2\left(\frac{x}{2}\right)}}{\frac{\cos^2\left(\frac{x}{2}\right)}{\cos^2\left(\frac{x}{2}\right)}} = \frac{\left[\cos^2\left(\frac{x}{2}\right)-\sin^2\left(\frac{x}{2}\right)\right] \cdot \cos^2\left(\frac{x}{2}\right)}{\cos^2\left(\frac{x}{2}\right)} = \cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right)$$

$$= \cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right) \stackrel{\text{Additionstheorem}}{\text{des Cosinus}} = \cos(x)$$

Ausserdem gilt für x mit $\frac{x}{2} = \arctan\left(\tan\left(\frac{x}{2}\right)\right)$

$$\arctan(t) = \arctan\left(\tan\left(\frac{x}{2}\right)\right) = \frac{x}{2}$$

also $x = 2 \cdot \arctan(t)$. Dann ist

$$\frac{dx}{dt} = \frac{d}{dt} 2 \cdot \arctan(t) \stackrel{\text{\tiny F+H F4}}{=} 2 \cdot \frac{1}{1+t^2} \quad \text{für} \quad x \quad \text{mit} \quad \frac{x}{2} = \arctan\left(\tan\left(\frac{x}{2}\right)\right)$$

Also gilt diese General substitution nur für diese x, d.h. für $-\pi < x \le \pi$ (siehe Bild zu Aufgabe 4.3a)). Aufgabe 4.3b) Wenden Sie diese Erfahrung an auf die Berechnung von

$$\int_{x=2}^{x=14} \frac{1}{3 + \cos(x)} dx$$

Erkenntnis: Bei der Stammfunktion ist die Konstante im allgemeinen abhängig vom betrachteten Intervall.

Lösung 4.3b)

$$\int_{x=2}^{x=14} \frac{1}{3 + \cos(x)} dx \stackrel{\text{General-substitution}}{=} \int_{x=2}^{x=14} \frac{1}{3 + \frac{1-t^2}{1+t^2}} \cdot \frac{2}{1+t^2} dt$$

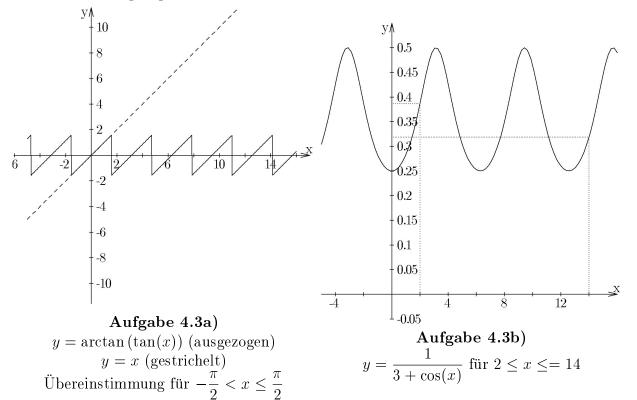
$$= \int_{x=2}^{x=14} \frac{1+t^2}{3 \cdot (1+t^2) + (1-t^2)} \cdot \frac{2}{1+t^2} dt$$

$$= \int_{x=2}^{x=14} \frac{2}{4+2 \cdot t^2} dt = \int_{x=2}^{x=14} \frac{1}{2+t^2} dt$$

$$F + \frac{H}{=} 8.3 \qquad \frac{1}{\sqrt{2}} \cdot \left[\arctan\left(\frac{t}{\sqrt{2}}\right) \right]_{x=2}^{x=14} = \frac{1}{\sqrt{2}} \cdot \left[\arctan\left(\frac{\tan\left(\frac{x}{2}\right)}{\sqrt{2}}\right) \right]_{x=2}^{x=14}$$

$$= \frac{1}{\sqrt{2}} \cdot \left[\arctan\left(\frac{\tan\left(7\right)}{\sqrt{2}}\right) - \arctan\left(\frac{\tan\left(1\right)}{\sqrt{2}}\right) \right] \approx 0.2$$

Dieses Ergebnis ist falsch, wie an einer groben Abschätzung des Flächeninhalts in untenstehender Abbildung abgelesen werden kann.



Im Intervall $x_{min}=2 \le x \le x_{max}=14$ beträgt das absolute Minimum y_{min} der Funktion $y = \frac{1}{3 + \cos(x)}$ nach der Zeichung oder einer Extremwert-Berechnung $y_{min} = 0.25$:

Da eine notwendige Bedingung für das Auftreten eines Extremums $\frac{dy}{dx} = 0$ ist, muss al-

so
$$-\frac{\sin(x)}{(3+\cos(x))^2} = 0$$
 oder $\sin(x) = \text{gelten}$, d.h. $x_{extr} = n \cdot \pi$ für $n \in \mathbb{Z}$. Es ist $y_{min} = \frac{1}{3+\cos(2\cdot\pi)} = \frac{1}{4} = 0.25$ und $y_{max} = \frac{1}{3+\cos(\pi)} = \frac{1}{2} = 0.50$.

Damit ist $F_U = (x_{max} - x_{min}) \cdot y_{min} = 12 \cdot 0.25 = 3$ eine untere Abschätzung für den Flächeninhalt.

Also muss $\int_{x-2}^{x=14} \frac{1}{3 + \cos(x)} dx > 3 \text{ gelten.}$

Da ferner in diesem Intervall das absolute Maximum y_{max} der Funktion $y=\frac{1}{3+\cos(x)}$ nach der Zeichung (oder einer Berechnung) $y_{max} = 0.50$ beträgt, ist $F_O = (x_{max} - x_{min}) \cdot y_{max} =$

 $12 \cdot 0.50 = 6 \text{ eine obere Abschätzung für den Flächeninhalt.}$ Also muss $\int_{x=2}^{x=14} \frac{1}{3 + \cos(x)} dx < 6 \text{ gelten.}$ Nach 4.3a) hat die Funktion \arctan im betrachteten Intervall $2 \le x \le 14$ Sprungstellen bei

$$x = \pi \text{ und bei } x = 3 \cdot \pi. \text{ Es ist}$$

$$\lim_{x \to \pi^{-}} \arctan\left(\tan\left(\frac{x}{2}\right)\right) = -\frac{\pi}{2} \text{ und } \lim_{x \to \pi^{+}} \arctan\left(\tan\left(\frac{x}{2}\right)\right) = \frac{\pi}{2},$$

$$\dim_{\phi \to \infty} \arctan(\phi) = \frac{\pi}{2} \text{ und } \lim_{\phi \to -\infty} \arctan(\phi) = -\frac{\pi}{2} \text{ ist.}$$

Daher "springt" die Funktion $\frac{1}{\sqrt{2}}$ ·arctan $\left(\tan\left(\frac{x}{2}\right)\right)$ an den Sprungstellen um den Betrag $\frac{\pi}{\sqrt{2}}$

Die Stammfunktion lautet also:

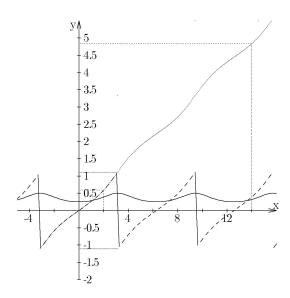
$$F(x) := \int \frac{1}{3 + \cos(x)} dx = \begin{cases} \frac{1}{\sqrt{2}} \cdot \arctan\left(\frac{\tan\left(\frac{x}{2}\right)}{\sqrt{2}}\right) & \text{für } -\pi < x \le \pi \\ \frac{1}{\sqrt{2}} \cdot \left[\arctan\left(\frac{\tan\left(\frac{x}{2}\right)}{\sqrt{2}}\right) + \pi\right] & \text{für } \pi < x \le 3 \cdot \pi \\ \frac{1}{\sqrt{2}} \cdot \left[\arctan\left(\frac{\tan\left(\frac{x}{2}\right)}{\sqrt{2}}\right) + 2 \cdot \pi\right] & \text{für } 3 \cdot \pi < x \le 5 \cdot \pi \end{cases}$$

Damit ergibt sich

$$F(14) = \frac{1}{\sqrt{2}} \cdot \left[\arctan\left(\frac{\tan\left(\frac{14}{2}\right)}{\sqrt{2}}\right) + 2 \cdot \pi \right] \approx 4.833$$

$$F(2) = \frac{1}{\sqrt{2}} \cdot \left[\arctan\left(\frac{\tan\left(\frac{2}{2}\right)}{\sqrt{2}}\right) \right] \approx 0.589$$

und damit
$$\int_{x=2}^{x=14} \frac{1}{3 + \cos(x)} dx = F(14) - F(2) \approx 4.244$$



Aufgabe 4.3b)

Kurve $\frac{1}{3 + \cos(x)}$ (ausgezogen) mit Stammfunktion (gepunktet)

Aufgabe 4.4: (2. Tschebyscheff-Polynom)

Zeigen Sie: Für $-1 \le x \le 1$ gilt $\cos(2 \cdot \arccos(x)) = 2 \cdot x^2 - 1$

Lösung 4.4

Nach den Additionstheoremen (siehe F+H, F1) gilt

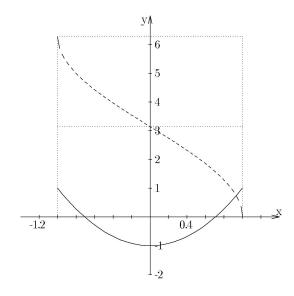
$$\cos(2 \cdot \spadesuit) = \cos^2(\spadesuit) - \sin^2(\spadesuit)$$

Daher ist hier mit $\spadesuit = \arccos(x)$

$$\cos(2 \cdot \arccos(x)) = \cos^2(\arccos(x)) - \sin^2(\arccos(x))$$
$$= 2 \cdot \cos^2(\arccos(x)) - 1$$

Nach Definition von arccos ist $\cos(\arccos(x)) = x$ für $-1 \le x \le 1$ (siehe auch F+H, 3.3) und damit

$$\cos\left(2 \cdot \arccos(x)\right) = 2 \cdot x^2 - 1$$



Aufgabe 4.4

 $f(x) = \cos(2 \cdot \arccos(x))$ (ausgezogen) $g(x) = 2 \cdot \arccos(x)$ (gestrichelt)

Aufgabe 4.5: Nullstellenbestimmung bei Winkelfunktionen

Bestimmen Sie alle Lösungen x der Gleichung $\sin(2 \cdot x) - \cos(2 \cdot x) = 1$ mit $x \in [0, 2 \cdot \pi)$.

Lösung zu Aufgabe 4.5:

Kurzer Lösungsweg: Nach den Additionstheoremen ist

$$\sin(2 \cdot x) - \cos(2 \cdot x) = 2 \cdot \sin(x) \cdot \cos(x) - \left(2 \cdot \cos^2(x) - 1\right) = 2 \cdot \cos(x) \cdot (\sin(x) - \cos(x)) + 1$$

also muss gelten

$$\cos(x) \cdot (\sin(x) - \cos(x)) = 0$$

d.h. entweder $\cos(x) = 0$ [und damit $x = \frac{\pi}{2} \cdot (2 \cdot k + 1)$ für k = 0, 1, 2, ...] oder $\sin(x) = \cos(x)$ [und damit $x = \frac{\pi}{4} \cdot (4 \cdot k + 1)$ für k = 0, 1, 2, ...]. Im Intervall $[0, 2 \cdot \pi)$ liegen die Lösungen $x_1 = \frac{\pi}{4}$, $x_2 = \frac{\pi}{2}$, $x_3 = \frac{5 \cdot \pi}{4}$, $x_4 = \frac{3 \cdot \pi}{2}$

Anderer Weg Es werden zunächst ein A und ein φ gesucht, so dass gilt

$$\sin(2 \cdot x) - \cos(2 \cdot x) = A \cdot \sin(2 \cdot x - \varphi) \text{ mit } A > 0 \text{ und } \varphi \in [0, 2 \cdot \pi)$$
 (6)

Wenn es A und φ mit dieser Eigenschaft gibt, dann lautet die Aufgabe $A \cdot \sin(2 \cdot x - \varphi) = 1$. Also suchen wir A und φ mit der Eigenschaft (6). Da nach den Additionstheoremen gilt

$$\sin(\spadesuit - \lozenge) = \sin(\spadesuit) \cdot \cos(\lozenge) - \cos(\spadesuit) \cdot \sin(\lozenge)$$

muss mit $\spadesuit = 2 \cdot x$ und $\lozenge = \varphi$ gelten

$$1 = \sin(2 \cdot x) - \cos(2 \cdot x) = A \cdot (\sin(2 \cdot x) \cdot \cos(\varphi) - \cos(2 \cdot x) \cdot \sin(\varphi))$$
$$= (A \cdot \cos(\varphi)) \cdot \sin(2 \cdot x) - (A \cdot \sin(\varphi)) \cdot \cos(2 \cdot x)$$
(7)

Bestimmung von A:

Für A und φ müssen nach Gleichung (7) gelten

$$A \cdot \cos(\varphi) = 1$$
, und $A \cdot \sin(\varphi) = 1$ (8)

Damit ist

$$A^2 \cdot \cos^2(\varphi) = 1$$
 und $A^2 \cdot \sin^2(\varphi) = 1$

und folglich

$$A^{2} = A^{2} \cdot \left(\sin^{2}(\varphi) + \cos^{2}(\varphi)\right) = A^{2} \cdot \sin^{2}(\varphi) + A^{2} \cdot \cos^{2}(\varphi) = 2$$

Daraus folgt wegen A > 0: $A = \sqrt{2}$;

Bestimmung von φ :

Da A bekannt ist, gilt nach Gleichung (8) wegen $\varphi \in [0, 2 \cdot \pi)$

$$\cos(\varphi) = \frac{1}{2} \cdot \sqrt{2}$$
 und $\sin(\varphi) = \frac{1}{2} \cdot \sqrt{2}$

Daraus folgt dann $\varphi = \frac{\pi}{4}$.

Ergebnis:

Nach dem Ansatz (6) und (7) ist

$$1 = \sin(2 \cdot x) - \cos(2 \cdot x) = \sqrt{2} \cdot \sin(2 \cdot x - \frac{\pi}{4})$$

und damit

$$\sin(2 \cdot x - \frac{\pi}{4}) = \frac{1}{2} \cdot \sqrt{2}$$

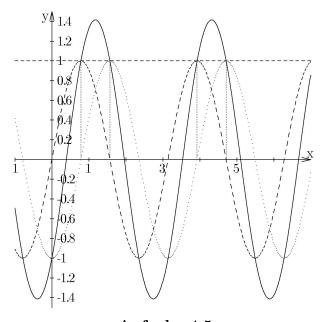
Diese Bedingung gilt für Winkel $2 \cdot x$ mit

$$2\cdot x - \frac{\pi}{4} = \frac{\pi}{4} + k\cdot 2\cdot \pi\,, \quad k\in \mathbb{Z} \quad \text{oder} \quad 2\cdot x - \frac{\pi}{4} = \frac{3\cdot \pi}{4} + k\cdot 2\cdot \pi\,, \quad k\in \mathbb{Z}$$

Daher muss gelten

$$x = \frac{\pi}{4} + k \cdot \pi$$
, $k \in \mathbb{Z}$ oder $x = \frac{\pi}{2} + k \cdot \pi$, $k \in \mathbb{Z}$

Im Intervall $[0, 2\pi)$ liegen die Lösungen $\underline{x_1 = \frac{\pi}{4}, x_2 = \frac{\pi}{2}, x_3 = \frac{5 \cdot \pi}{4}, x_4 = \frac{3 \cdot \pi}{2}}$



Aufgabe 4.5

$$y = \sin(2 \cdot x) \text{ (gestrichelt)}$$

$$y = -\cos(2 \cdot x) \text{ (gepunktet)}$$

$$y = \sin(2 \cdot x) - \cos(2 \cdot x) \text{ (ausgezogen)}$$