

Stand: 18. August 2008

http://www.iazd.uni-hannover.de/~windelberg/teach/ing

Anwendungen zweidimensionaler Differentialrechnung 7

Unbestimmte Ausdrücke

$$\frac{[0]}{[0]} \qquad \frac{[\infty]}{[\infty]} \qquad [0 \cdot \infty] \qquad [0^0] \qquad [1^\infty] \qquad [\infty^0] \qquad [\infty - \infty]$$

Regel von l'Hospital:

Sind f und g in einer Umgebung von x_0 differenzierbar und ist

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \begin{cases} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ \begin{bmatrix} \infty \\ \infty \end{bmatrix} \end{cases} \quad \text{dann ist } \lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Aufgabe 7.1: Ermitteln Sie die folgenden Grenzwerte, soweit möglich mit den Regeln von *l'HOSPITAL*:

Aufgabe 7.1.1: $\lim_{x \to \pi/2} \frac{\cos(x)}{x - \pi/2}$

Lösung: Fall $\left[\frac{0}{0}\right]$: $\lim_{x \to \pi/2} \frac{\cos(x)}{x - \pi/2} \stackrel{\left[\frac{0}{0}\right]}{=} \lim_{x \to \pi/2} \frac{-\sin(x)}{1} = -1.$

Aufgabe 7.1.2: $\lim_{x\to\infty} \frac{x^3}{e^x}$,

Lösung: Fall $\left[\frac{\infty}{\infty}\right]$: $\lim_{x \to \infty} \frac{x^3}{e^x} \stackrel{\left[\frac{\infty}{\infty}\right]}{==} \lim_{x \to \infty} \frac{3 \cdot x^2}{e^x} \stackrel{\left[\frac{\infty}{\infty}\right]}{==} \lim_{x \to \infty} \frac{6 \cdot x}{e^x} \stackrel{\left[\frac{\infty}{\infty}\right]}{==} \lim_{x \to \infty} \frac{6}{e^x} = 0$

Aufgabe 7.1.3: $\lim_{x\to\infty} \frac{(\ln(x))^2}{\sqrt{x}}$,

Lösung von Aufgabe 7.1.3: Fall
$$\left[\frac{\infty}{\infty}\right]$$

$$\lim_{x \to \infty} \frac{(\ln(x))^2}{\sqrt{x}} \stackrel{\left[\frac{\infty}{\infty}\right]}{=} \lim_{x \to \infty} \frac{2 \cdot \ln(x) \cdot \frac{1}{x}}{\frac{1}{2 \cdot \sqrt{x}}} = \lim_{x \to \infty} \frac{4 \cdot \ln(x)}{\sqrt{x}} \stackrel{\left[\frac{\infty}{\infty}\right]}{=} \lim_{x \to \infty} \frac{8}{\sqrt{x}} = 0$$

Aufgabe 7.1.4: $\lim_{x \to \frac{\pi}{2}^-} \frac{\tan(x)}{\ln(\frac{\pi}{2} - x)}$

Lösung von Aufgabe 7.1.4: Fall $\begin{bmatrix} \infty \\ \infty \end{bmatrix}$

$$\lim_{x \to \frac{\pi}{2}^-} \frac{\tan(x)}{\ln\left(\frac{\pi}{2} - x\right)} \stackrel{\left[\frac{\infty}{\infty}\right]}{=} \lim_{x \to \frac{\pi}{2}^-} \frac{x - \frac{\pi}{2}}{\cos^2(x)} \stackrel{\left[\frac{0}{0}\right]}{=} \lim_{x \to \frac{\pi}{2}^-} \frac{1}{-2 \cdot \sin(x) \cdot \cos(x)} = -\infty$$

Aufgabe 7.1.5: $\lim_{x\to 0^+} x \cdot \ln(x)$

Lösung von Aufgabe 7.1.5: Fall $[0 \cdot \infty]$

$$\lim_{x \to 0^+} x \cdot \ln(x) \stackrel{[0 \cdot \infty]}{=} = \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x}} \stackrel{\left[\frac{\infty}{\infty}\right]}{=} = \lim_{x \to 0^+} \frac{\left(\frac{1}{x}\right)}{\left(-\frac{1}{x^2}\right)} = \lim_{x \to 0^+} -x = 0.$$

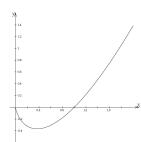


Bild zu Aufgabe 7.1.5: $x \cdot \ln(x)$ $x_0 = 0^+$

Aufgabe 7.2: Skizzieren Sie die folgende Kurve in der Umgebung des Punktes x_0 und berechnen Sie die folgenden Grenzwerte - gegebenenfalls nach der Regel von l'Hospital:

$$\lim_{x\to 0} \arcsin(2 \cdot x^2) \cdot \cot(3 \cdot x^2)$$

Lösung zu Aufgabe 7.2: Fall $[0 \cdot \infty]$

Es ist

$$\lim_{x\to 0}\arcsin(2\cdot x^2)\cdot\cot(3\cdot x^2)$$

$$\stackrel{[0 \cdot \infty]}{=} \lim_{x \to 0} \frac{\arcsin(2 \cdot x^2)}{\tan(3 \cdot x^2)}$$

$$\stackrel{[0]}{=} \lim_{x \to 0} \frac{\frac{4 \cdot x}{\sqrt{1 - 4 \cdot x^2}}}{\frac{6 \cdot x}{\cos^2(3 \cdot x^2)}}$$

$$= \lim_{x \to 0} \frac{2 \cdot \cos^2(3 \cdot x^2)}{3 \cdot \sqrt{1 - 4 \cdot x^2}} = \frac{2}{3}$$

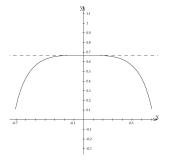


Bild zu Aufgabe 7.2: $\arcsin(2 \cdot x^2) \cdot \cot(3 \cdot x^2)$ $x_0 = 0$

Aufgabe 7.3:

Skizzieren Sie die folgende Kurve in der Umgebung des Punktes x_0 und berechnen Sie die folgenden Grenzwerte - gegebenenfalls nach der Regel von l'Hospital:

$$\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{\sin(x)} \right) \text{ für } x_0 = 0$$

Lösung von Aufgabe 7.3: Fall $[\infty - \infty]$:

Es ist
$$\lim_{x \to 0^{+}} \left(\frac{1}{x} - \frac{1}{\sin(x)} \right)$$

$$[\infty = \infty] \lim_{x \to 0^{+}} \frac{\sin(x) - x}{x \cdot \sin(x)} \stackrel{[0]}{=} \lim_{x \to 0^{+}} \frac{\cos(x) - 1}{\sin(x) + x \cdot \cos(x)}$$

$$\stackrel{[0]}{=} \lim_{x \to 0^{+}} \frac{-\sin(x)}{2 \cdot \cos(x) - x \cdot \sin(x)} = 0$$

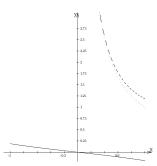


Bild zu Aufgabe 7.3:
$$\left(\frac{1}{\sin x} - \frac{1}{x}\right) \qquad x_0 = 0^+$$

Aufgabe 7.4: $\lim_{x\to 0^+} x^x$

Lösung von Aufgabe 7.4: Fall $[0^0]$

Da hier x im Exponenten auftritt, ist die Regel

$$\heartsuit = e^{\ln(\heartsuit)}$$

anzuwenden: Es ist $\lim_{x\to 0^+} x^x \stackrel{[0^0]}{=} \lim_{x\to 0^+} e^{\ln(x^x)} = \lim_{x\to 0^+} e^{x\cdot \ln(x)} = e^{\spadesuit}$, wobei

Aufgabe 7.5:
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x$$

Lösung von Aufgabe 7.5: Fall $[1^{\infty}]$:

Wegen $\left(1 + \frac{1}{x}\right)^x = e^{x \ln(1+1/x)}$ wird zunächst der Limes des Exponenten untersucht:

Es ist
$$\lim_{x \to \infty} x \ln(1+1/x) = \lim_{x \to \infty} \frac{\ln(1+1/x)}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\frac{1}{(1+1/x)} \left(-\frac{1}{x^2}\right)}{\frac{-1}{x^2}} = \lim_{x \to \infty} \frac{1}{1+1/x} = 1$$

Also erhält man $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e^1 = e$ (das war wegen $\lim_{n\to\infty} (1+1/n)^n = e$ zu vermuten!).

Aufgabe 7.6:
$$\lim_{x \to \infty} (e^x + e^{(3 \cdot x)})^{\frac{1}{2 \cdot x}}$$

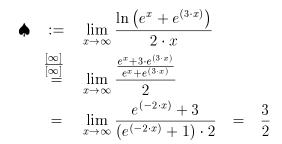
Lösung von Aufgabe 7.6: Fall $[\infty^0]$

Potenzregeln und logarithmisches Rechnen:

$$\spadesuit = e^{\ln(\spadesuit)}$$

$$\lim_{x \to \infty} \left(e^x + e^{(3 \cdot x)} \right)^{\frac{1}{2 \cdot x}} \stackrel{[\infty^0]}{=}$$

$$e^{\lim_{x \to \infty} \frac{\ln\left(e^x + e^{(3 \cdot x)}\right)}{2 \cdot x}} = e^{\spadesuit} \text{ wobei}$$



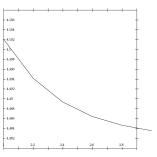


Bild zu Aufgabe 7.6: $\left(e^{x} + e^{(3 \cdot x)}\right)^{\frac{1}{2 \cdot x}} \qquad x_{0} = \infty$

also

$$\lim_{x \to \infty} \left(e^x + e^{(3 \cdot x)} \right)^{\frac{1}{2 \cdot x}} \approx 4.48$$

Geschosszahl nach der Niedersächsischen Bauordnung (NBauO)

 $\S~2~(6)$: ein Vollgeschoß ist ein Geschoß, ... dessen Deckenoberkante im Mittel mehr als 1,60 m über der Geländeoberfläche liegt.

Daher ist zu entscheiden, in welcher Höhe eine ebene Fläche (nämlich die Deckenoberkante) "über" der Geländeoberfläche liegt.

juristisches Mittel: Ist der Grundriss eines Hauses ein Rechteck, so wird nach juristischer Sicht an den vier Eckpunkten A, B, C und D des Grundrisses jeweils die Höhe h_A , h_B , h_C bzw. h_D der Deckenoberkante über der Geländeoberfläche gemessen. $m_j := (h_A + h_B + h_C + h_D)/4$ ist dann das juristische Mittel.

Aufgabe 7.7: Mittelwertbildung in der NBauO

Bestimmen Sie die Höhe der Deckenoberkante über der Geländeoberfläche

7.7a) durch das juristische Mittel m_i und

7.7b) durch das arithmetische Mittel m_a

für die folgende Geometrie von Deckenoberkante und Gelände:

Eckpunkte A := (0, 5, 1), B := (0, 0, 1), C := (20, 0, 1) und D : (20, 5, 1).

Geländehöhe an den Rändern des Grundrisses:

$$\overline{AB} \ x = 0 \text{ und}$$

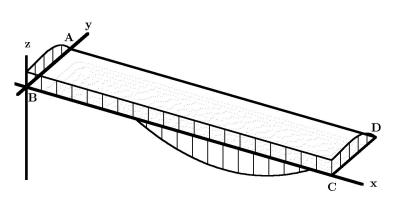
$$z = 1 + \frac{2}{25} \cdot y^2 - \frac{3}{125} \cdot y^3$$
 für $0 \le y \le 5$

$$\overline{AD} \ y = 5 \text{ und}$$

$$z = \frac{1}{20} \cdot (x - 10)^2 - 5$$
 für $0 \le x \le 20$

$$\begin{array}{l} \overline{CD} \ x = 20 \text{ und} \\ z = 1 + \frac{2}{25} \cdot y^2 - \frac{3}{125} \cdot y^3 \\ \text{für } 0 \leq y \leq 5 \end{array}$$

$$\overline{BC} \ y = 0 \ \text{und} \ z = 1 \ \text{für} \ 0 \le x \le 20$$



Aufgabe 7.7): Grundriss und Geländehöhen

(alle Angaben in m).

Lösung 7.7a)

Die Geländehöhen g_A , g_B , g_C und g_D an den vier Eckpunkten sind aus den vier Kurven der Geländehöhe an den Rändern zu bestimmen: Es sind $g_A = 0$, $g_B = 1$, $g_C = 1$ und $g_D = 0$. Die Höhe d der Deckenoberkante beträgt d = 1. Folglich ist die Höhe der Deckenoberkante über dem Gelände an den vier Eckpunkten

$$h_A=d-g_A=1,\,h_B=d-g_B=0,\,h_C=d-g_C=1$$
 und $h_D=d-g_D=0$ und folglich

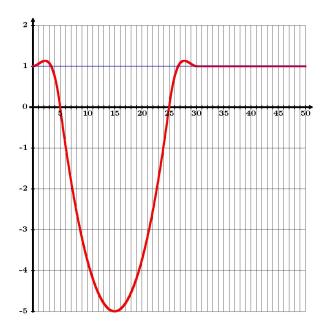
$$m_{i} = 0.5$$

d.h. bei dieser Berechnung ist das Geschoss kein Vollgeschoss im Sinne der NBauO.

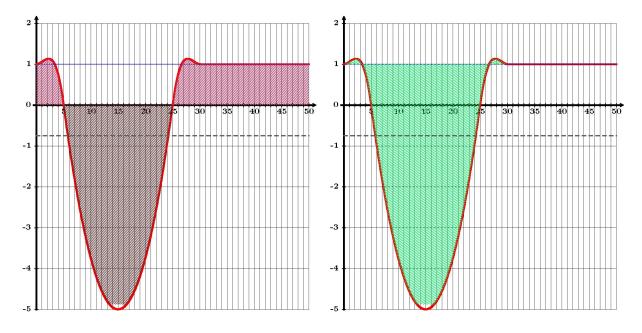
Lösung 7.7b)

Beginnend im Punkt B entsteht folgende Abwicklung der Geländehöhen:

- $B \to A$: Im Intervall $0 \le x \le 5$ ist $z = f(x) = 1 + \frac{2}{25} \cdot x^2 \frac{3}{125} \cdot x^3$. Damit beträgt in diesem 5 m langen Intervall der Flächeninhalt $F_{BA} = \int_{x=0}^{x=5} z \, dx = \frac{55}{12}$ und die mittlere Geländehöhe $\frac{1}{5} \cdot F_{BA} = \frac{11}{12}$
- $A \to D$: Im Intervall $5 \le x \le 25$ ist $z = f(x) = \frac{1}{20} \cdot (x 15)^2 5$. Damit beträgt in diesem 20 m langen Intervall der Flächeninhalt $F_{AD} = \int_{x=5}^{x=25} z \, dx = -\frac{200}{3}$ und die mittlere Geländehöhe $\frac{1}{20} \cdot F_{AD} = -\frac{10}{3}$
- $D \to C$: Im Intervall $25 \le x \le 30$ ist der Flächenhalt $F_{DC} = F_{BA}$.



- Aufgabe 7.7: Geländehöhe längs des Grundrisses
- $C \to B$: es ist $30 \le x \le 50$, und in diesem Intervall ist die Höhenlinie konstant: f(x) = 1. Damit beträgt in diesem 20 m langen Intervall der Flächeninhalt $F_{CB} = 20 \cdot 1 = 20$ und die mittlere Geländehöhe 1.



Der gesamte Flächeninhalt
$$F_{ges}$$
 beträgt also $F_{ges} = F_{BA} + F_{AD} + F_{DC} + F_{CB} = \frac{55}{12} - \frac{200}{3} + \frac{55}{12} + 20 = -\frac{75}{2}$.

Der Mittelwert des Flächeninhalts ist dann $mitt(F_{ges}) = \frac{1}{50} \cdot \left(-\frac{75}{2}\right) = -\frac{3}{4}$.

Damit liegt die Deckenoberkante der Kellerdecke im Mittel un

$$1 - \left(-\frac{3}{4}\right) = 1.75 \, m$$

über der Geländeoberfläche.

d.h. bei mathematischer Mittelwertbildung ist das Geschoss ein Vollgeschoss im Sinne der NBauO.

Zur Bestimmung des arithmetischen Mittels g der Geländehöhen kann auch wie folgt stückweise integriert werden:

$$g = \frac{1}{b-a} \cdot \int_{a}^{b} f(x) \, dx = \frac{1}{50-0} \cdot \int_{0}^{50} f(x) \, dx$$
$$= \frac{1}{50} \cdot \left(\int_{0}^{5} f(x) \, dx + \int_{5}^{25} f(x) \, dx + \int_{25}^{30} f(x) \, dx + \int_{30}^{50} f(x) \, dx \right)$$

und folglich

$$g = \frac{1}{50} \cdot \left(\left[x + \frac{2}{3 \cdot 25} \cdot x^3 - \frac{3}{4 \cdot 125} \cdot x^4 \right]_{x=0}^{x=5} + \left[\frac{1}{3 \cdot 20} \cdot (x - 15)^3 - 5 \cdot x \right]_{x=5}^{x=25} + \left[\frac{1}{2} \cdot (x - 25)^2 - \frac{7}{3 \cdot 25} \cdot (x - 25)^3 + \frac{3}{4 \cdot 125} \cdot (x - 25)^4 \right]_{x=25}^{x=30} + \left[x \right]_{x=30}^{x=50} \right)$$

oder

$$g = \frac{1}{50} \cdot \left(\left[5 + \frac{2}{3} \cdot 5 - \frac{3}{4} \cdot 5 \right] + \left[\frac{1}{3 \cdot 20} \cdot \left(10^3 - (-10)^3 \right) - 5 \cdot 20 \right]$$

$$+ \left[\frac{1}{2} \cdot 5^2 - \frac{7}{3} \cdot 5 + \frac{3}{4} \cdot 5 \right] + [20] \right)$$

$$= \frac{1}{50} \cdot \left(5 + \frac{10}{3} - \frac{15}{4} + \frac{2000}{3 \cdot 20} - 100 + \frac{25}{2} - \frac{35}{3} + \frac{15}{4} + 20 \right)$$

$$= \frac{1}{50} \cdot \left(5 - 100 + 20 + \frac{25}{2} + \frac{10}{3} + \frac{100}{3} - \frac{35}{3} - \frac{15}{4} + \frac{15}{4} \right)$$

$$= \frac{1}{50} \cdot \left(-75 + \frac{25}{2} + \frac{75}{3} \right) = \frac{1}{50} \cdot \frac{-450 + 75 + 150}{6} = \frac{-225}{300} = -0.75$$

Folglich ist

$$m_a = d - g = 1.75$$