

Stand: 18. August 2008

http://www.iazd.uni-hannover.de/~windelberg/teach/ing

8 Blockbild und Höhenlinien

Veranschaulichen Sie sich die durch die Funktion

$$z = f(x, y) = \frac{y}{1 + x^2}$$

beschriebene Fläche im Bereich $B:=\{(x,y)\,|\, -2\leq x\leq 2\,,\, -2\leq y\leq 2\,,\,\}$

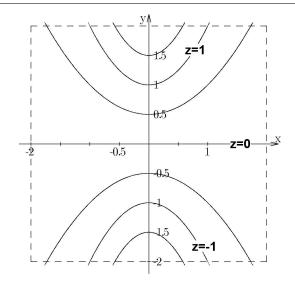
Aufgabe 8.1a) Veranschaulichung der Fläche durch eine Höhenkarte mit den Höhen $z=\pm\frac{1}{2},\,z=\pm1$ und $z=\pm\frac{3}{2}$

Lösung von Aufgabe 8.1a):

Die Höhenlinien ergeben sich aus der Bedingung

$$z = konstant$$

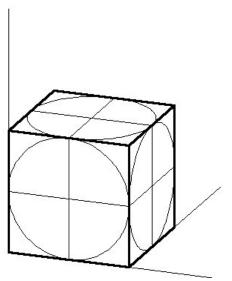
Höhe	definierende	Beschreibung	
	Gleichung	Normalform	
z = c = 0	y = 0	x-Achse	
$z = c = \frac{1}{2}$	$2 \cdot y = 1 + x^2$	Parabel	
2		$x^2 = 2 \cdot (y - \frac{1}{2})$: Scheitel in $(0, \frac{1}{2})$, Öffnung $p = 2$	
z = c = 1	$y = 1 + x^2$	Parabel	
		$x^2 = 1 \cdot (y - 1)$: Scheitel in $(0, 1)$, Öffnung $p = 1$	
$z = c = \frac{3}{2}$	$\frac{2}{3} \cdot y = 1 + x^2$	Parabel	
2	J	$x^2 = \frac{2}{3} \cdot (y - \frac{3}{2})$: Scheitel in $(0, \frac{3}{2})$, Öffnung $p = \frac{2}{3}$	
$z = c = -\frac{1}{2}$	$2 \cdot y = -(1+x^2)$	Parabel	
2		$x^2 = -2 \cdot (y + \frac{1}{2})$: Scheitel in $(0, -\frac{1}{2})$, Öffnung $p = -2$	
z = c = -1	$y = -(1+x^2)$	Parabel	
		$x^2 = -1 \cdot (y+1)$: Scheitel in $(0,-1)$, Öffnung $p = -1$	
$z = c = -\frac{3}{2}$	$\frac{2}{3} \cdot y = -(1+x^2)$	Parabel	
2	S	$x^2 = -\frac{2}{3} \cdot (y + \frac{3}{2})$: Scheitel in $(0, -\frac{3}{2})$, Öffnung $p = -\frac{2}{3}$	



Aufgabe 8.1a): Höhenlinien

Aufgabe 8.1b) Veranschaulichung der Fläche durch ein Blockbild

Axonometrische Darstellung



Aufgabe 8.1b): Darstellung durch ein Blockbild

Es ist daher folgende Projektion f notwendig:

$$f: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \to \begin{pmatrix} x \cdot \cos(\alpha) + \frac{y}{2} \cdot \cos(\beta) \\ x \cdot \sin(\alpha) + \frac{y}{2} \cdot \sin(\beta) + z \end{pmatrix}$$

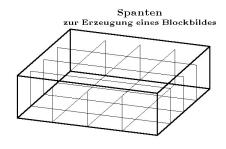
Bei der hier gewählten axonometrischen Darstellung (siehe nebenstehende Darstellung eines Würfels) werden folgende Winkel verwendet:

Die x-Achse wird um $\alpha = -7^{\circ} 10'$ um (0,0,0)in der x, z-Ebene gedreht,

die y-Achse wird auf die Hälfte gekürzt und im Winkel von $\beta = 41^{\circ} 25'$ gegenüber der positiven x-Achse gezeichnet.

die z-Achse behält ihre Richtung und Länge.

Ein "Blockbild" kann als ein Gipsmodell interpretiert werden, in dem die Geometrie durch "Spanten" in einen Rahmen mit den Abmessungen des Bereiches B gegeben wird (siehe Bild unten).



Aufgabe 8.1b): Lage der Spanten zur Erzeugung eines Blockbildes

Lösung von Aufgabe 8.1b):

Es werden Spanten eingezogen

a) für $x_1 = -1$, $x_2 = 0$ und $x_3 = 1$. Für jede Spante und für den Rand wird jeweils die Höhe $z = f(x_i, y)$ mit $i \in \{0, 1, 2, 3, 4\}$ und $-2 \le y \le 2$ berechnet.

$$z(x_0, y) = f(-2, y) = \frac{y}{5}$$

$$z(x_1, y) = f(-1, y) = \frac{y}{2}$$

$$z(x_2, y) = f(0, y) = y$$

$$z(x_3, y) = f(1, y) = \frac{y}{2}$$

$$z(x_4, y) = f(2, y) = \frac{2}{5}$$

b) für $y_1 = -1$, $y_2 = 0$ und $y_3 = 1$. Für jede Spante und den Rand wird jeweils die Höhe $z = f(x, y_i)$ mit $i \in \{0, 1, 2, 3, 4\}$ und $-2 \le x \le 2$ berechnet.

$$z(x, y_0) = f(x, -2) = \frac{-2}{1+x^2}$$

$$z(x, y_1) = f(x, -1) = \frac{-1}{1+x^2}$$

$$z(x, y_2) = f(x, 0) = 0$$

$$z(x, y_3) = f(x, 1) = \frac{1}{1+x^2}$$

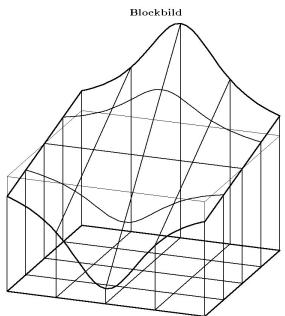
$$z(x, y_4) = f(x, 2) = \frac{2}{1+x^2}$$

$$z(x, y_1) = f(x, -1) = \frac{-1}{1+x^2}$$

$$z(x, y_2) = f(x, 0) = 0$$

$$z(x, y_3) = f(x, 1) = \frac{1}{1+x^2}$$

$$z(x, y_4) = f(x, 2) = \frac{1+x}{1+x^2}$$

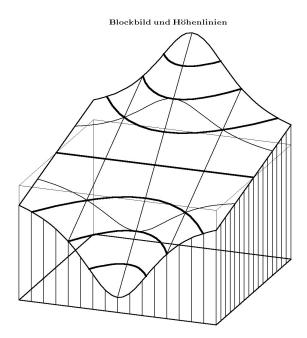


Aufgabe 8.1b): Blockbild

Aufgabe 8.1c)

Zeichnen Sie in das Blockbild (b) die Höhenlinien aus (a) ein.

Lösung:

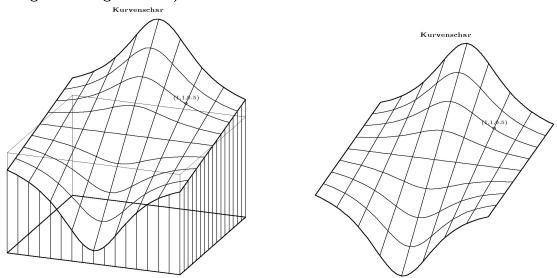


Aufgabe 8.1c): Blockbild und Höhenlinien

Aufgabe 8.1d)

Erzeugen Sie die Fläche aus Kurvenscharen $z = f(x, y_i)$ mit $y_i = -2 + 0.5 \cdot i$ (i = 0, ..., 8) und den Kurvenscharen $z = f(x_i, y)$ $x_i = -2 + 0.5 \cdot i$ (i = 0, ..., 8). Kennzeichnen Sie den Punkt mit den Koordinaten (1, 1, 0.5).

Lösung von Aufgabe 8.1d)

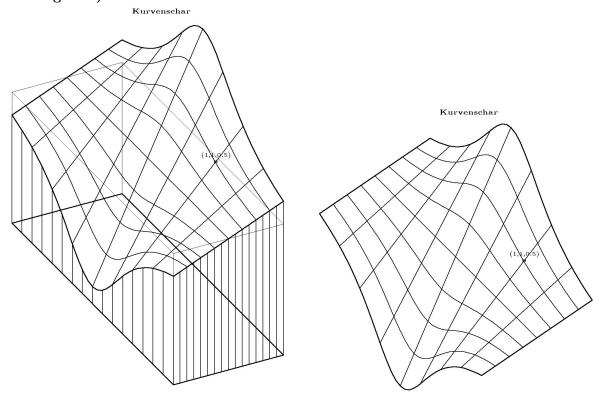


Aufgabe~8.1d): Erzeugende Kurvenscharen bei $\alpha=-7\,^{\circ}\,10'$ und $\beta=41\,^{\circ}\,25'$

Aufgabe 8.1e)

Erzeugen Sie die Fläche aus Kurvenscharen $z = f(x, y_i)$ mit $y_i = -2 + 0.5 \cdot i$ (i = 0, ..., 8) und den Kurvenscharen $z = f(x_i, y)$ $x_i = -2 + 0.5 \cdot i$ (i = 0, ..., 8) (wie in Teil d)), aber wählen Sie zur axonometrischen Darstellung die Winkel $\alpha = -45^{\circ}$ und $\beta = 15^{\circ}$. Kennzeichnen Sie den Punkt mit den Koordinaten (1, 1, 0.5).

Lösung 8.1e):



Aufgabe~8.1e): Erzeugende Kurvenscharen bei $\alpha=-45\,^{\circ}$ und $\beta=15\,^{\circ}$

Aufgabe 8.1f): Tangentialebene

Bestimmen Sie die Tangentialebene im Punkt (1,1) und zeichnen Sie diese in eine der Zeichnungen d) oder e) ein.

Versuchen Sie - zeichnerisch - herauszufinden, ob bzw. wie die Tangentialebene die Fläche im Bereich $B_1 := \{(x,y) \mid 0 \le x \le 2, 0 \le y \le 2, \}$ schneidet.

Lösung von Aufgabe 8.1f):

Es ist

$$f_x = \frac{-2 \cdot x \cdot y}{(1+x^2)^2}$$
 $f_y = \frac{1}{1+x^2}$

Hier ist

$$f(1,1) = \frac{1}{2}$$
 $f_x(1,1) = \frac{-2}{(1+1^2)^2} = -\frac{1}{2}$ $f_y(1,1) = \frac{1}{2}$

und damit für $(x_0, y_0) = (1, 1)$

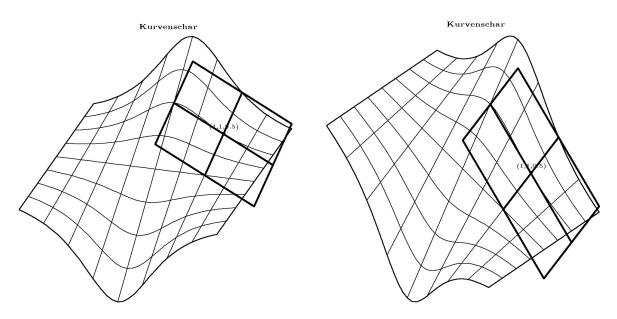
$$z = f(x_0, y_0) + f_x(x_0, y_0) \cdot (x - x_0) + f_y(x_0, y_0) \cdot (y - y_0) = \frac{1}{2} - \frac{1}{2} \cdot (x - 1) + \frac{1}{2} \cdot (y - 1)$$

oder

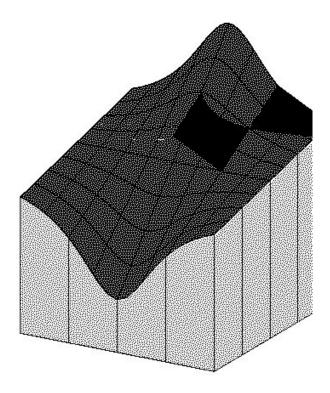
$$2 \cdot z = 1 - (x - 1) + (y - 1) = 1 - x + y$$
 oder $x - y + 2 \cdot z = 1$

Damit lautet hier die Gleichung der Tangentialebene im Punkt (1,1) an die Fläche z=f(x,y)

$$T = \{(x, y, z) \mid x - y + 2 \cdot z = 1\}$$



Aufgabe 8.1f): Tangentialebene im Punkt (1,1) an die Fläche z=f(x,y) links: $\alpha=-45^{\circ}$ und $\beta=15^{\circ}$ rechts: $\alpha=-45^{\circ}$ und $\beta=15^{\circ}$



Aufgabe 8.1f): Tangentialebene im Punkt (1,1) an die Fläche z=f(x,y) mit Schnittlinien zwischen Fläche und Tangentialebene

Natürlich kann die Schnittlinie zwischen Fläche und Tangentialebene bestimmt werden: Es muss gelten

$$2 \cdot z = 2 \cdot \frac{y}{1+x^2} = 1 - x + y \quad \text{oder} \quad 2 \cdot y = (1+x^2) \cdot (1-x+y) = 1 - x + y + x^2 - x^3 + x^2 \cdot y$$

und damit

$$y \cdot (1 - x^2) = 1 - x + x^2 - x^3$$
 oder $y = \frac{1 - x + x^2 - x^3}{1 - x^2}$

Folglich ist die Schnittkurve S bestimmt durch

$$S = \left\{ (x, y, z); x \in R; \ y = \frac{1 - x + x^2 - x^3}{1 - x^2}; \ z = \frac{1 - x + y}{2} \right\}$$

Gradient

Falls für einen Punkt (x_0, y_0) einer Funktion f(x, y) sowohl $f(x_0, y_0)$ als auch die partiellen Ableitungen $f_x(x_0, y_0)$ und $f_y(x_0, y_0)$ definiert sind, so heißt

$$\operatorname{grad}\,f\,:=\left(\frac{\partial\,f}{\partial\,x},\frac{\partial\,f}{\partial\,y}\right)\quad\operatorname{der}\,\mathbf{Gradient}\,\operatorname{von}\,f$$

Aufgabe 8.1g) (Gradient):

Berechnen Sie für die Funktion $z = f(x, y) = \frac{y}{1+x^2}$ den Gradient im Punkt $(x_0, y_0) = (1, 1)$.

- Zeichnen Sie diesen Gradienten in die Höhenkarte dieser Fläche ein (der Gradient in (x_0, y_0) steht senkrecht auf der Höhenlinie durch diesen Punkt)
- Zeichnen Sie diesen Gradienten in das Blockbild dieser Fläche ein (der Gradient in (x_0, y_0, z_0) zeigt in Richtung der maximalen Steigung)

Lösung von Aufgabe 8.1g):

Es ist nach 8.1f)

$$f(1,1) = \frac{1}{2}$$
 $f_x(1,1) = \frac{-2}{(1+1^2)^2} = -\frac{1}{2}$ $f_y(1,1) = \frac{1}{2}$

Also ist der Gradient

grad
$$f(1,1) = \left(-\frac{1}{2}, \frac{1}{2}\right)$$

und der Gradient hat die Steigung $m_{gradient} = -1$.

Andererseits geht durch den Punkt (1,1) die Höhenlinie zur Höhe $z=\frac{1}{2}$. Die Höhenlinie hat nach 8.1a) die Gleichung

$$y = \frac{1}{2} \cdot (1 + x^2)$$

Damit kann die Steigung dieser Kurve im Punkt (1, 1) berechnet werden:

$$y' = x$$
 , also $y'_{(x=1)} = m_{Tangente} = 1$

Auf der Tangente steht also der Gradient senkrecht, denn es ist

$$m_{Tangente} \cdot m_{gradient} = -1$$

relative Extremwerte

3D: Notwendige Bedingung für das Auftreten eines relativen Extremwertes:

Es seien $B \subseteq \mathbb{R}^2$ und $f: B \to \mathbb{R}$ eine differenzierbare Funktion. Wenn der Graph von z = f(x, y) in (x_e, y_e) ein relatives Extremum besitzt, so ist

$$f_x(x_e, y_e) = 0$$
 und $f_y(x_e, y_e) = 0$ (1)

3D: Hinreichende Bedingung für das Auftreten eines relativen Extremwertes:

Es ist zunächst die Determinante

$$D(x,y) := \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix}$$
 (2)

zu berechnen. Dann ist für jedes mögliche Extremum (x_e, y_e) der Wert $D(x_e, y_e)$ zu berechnen:

- wenn $D(x_e, y_e) > 0$ und $f_{xx} < 0$, dann besitzt die Fläche z = f(x, y) im Punkt (x_e, y_e) ein <u>relatives Maximum</u>
- wenn $D(x_e, y_e) > 0$ und $f_{xx} > 0$, dann besitzt die Fläche z = f(x, y) im Punkt (x_e, y_e) ein <u>relatives Minimum</u>
- wenn $D(x_e, y_e) < 0$, dann besitzt die Fläche z = f(x, y) im Punkt (x_e, y_e) ein kein Extremum (es liegt ein Sattelpunkt vor)
- wenn $D(x_e, y_e) = 0$, dann ist keine Aussage über ein Extremum möglich

Aufgabe 8.1h) (Extremwerte):

Bestimmen Sie die (relativen und absoluten) Extremwerte von z = f(x, y).

Lösung von Aufgabe 8.1h):

Nach 8.1f) ist

$$f_x = \frac{-2 \cdot x \cdot y}{(1+x^2)^2}$$
 und $f_y = \frac{1}{1+x^2}$

Aus der notwendigen Bedingung folgt

$$x = 0$$
 oder $y = 0$ wegen $f_x = 0$

 $\underline{\text{Aus der Zeichung}}$ ist ersichtlich, dass weder die x-Achse noch die y-Achse ein relatives Extremum bildet.

Ein <u>absolutes Minimum</u> tritt auf dem Rand im Punkt (0, -2) auf.

Ein absolutes Maximum tritt auf dem Rand im Punkt (0, 2) auf.

Zur hinreichenden Bedingung:

Es ist

$$f_{xx} = \frac{8 \cdot x^2 \cdot y}{(1+x^2)^3} - \frac{2 \cdot y}{(1+x^2)^2}$$
 und $f_{xy} = \frac{-2 \cdot x}{(1+x^2)^2}$ und $f_{yy} = 0$

und folglich

$$f_{xx}(0,y) = -2 \cdot y$$
 und $f_{xy}(0,y) = 0$ und $f_{yy}(0,y) = 0$

$$f_{xx}(x,0) = 0$$
 und $f_{xy}(x,0) = \frac{-2 \cdot x}{(1+x^2)^2}$ und $f_{yy}(x,0) = 0$

also ist

$$D(0,y) = \begin{vmatrix} -2 \cdot y & 0 \\ 0 & 0 \end{vmatrix} = 0 \quad \text{und} \quad D(x,0) = \begin{vmatrix} 0 & \frac{-2 \cdot x}{(1+x^2)^2} \\ \frac{-2 \cdot x}{(1+x^2)^2} & 0 \end{vmatrix} = \frac{4 \cdot x^2}{(1+x^2)^4}$$

Also ist für zwar (0, y) keine Aussage über ein Extremum möglich. Für (x, 0)ist zwar D(x, 0) > 0, aber es ist $f_{xx}(x, 0) = 0$.

Aufgabe 8.2:

Veranschaulichen Sie sich die durch die Funktion

$$z = f(x, y) = \sin(x) \cdot \sin(y)$$

beschriebene Fläche im Bereich $B:=\{(x,y)\mid -\pi \leq x \leq \pi, -\pi \leq y \leq \pi, \}$

a) durch eine Höhenkarte für die Höhen $z_0=0,\,z_1=\frac{1}{2},\,z_2=\frac{1}{2}\cdot\sqrt{2}$ und $z_3=\frac{1}{2}\cdot\sqrt{3}$

Lösung von Aufgabe 8.2a):

Die Gleichung $z = const. = \sin(x) \cdot \sin(y)$ lässt sich nach y auflösen:

b) durch ein Blockbild für die zylindrischen Spanten

$$\{(x,y,z); x = \cos(\varphi), y = \sin(\varphi), 0 \le \varphi \le 2 \cdot \pi\} \quad \text{und}$$
$$\{(x,y,z); x = 2 \cdot \cos(\varphi), y = 2 \cdot \sin(\varphi), 0 \le \varphi \le 2 \cdot \pi\}$$

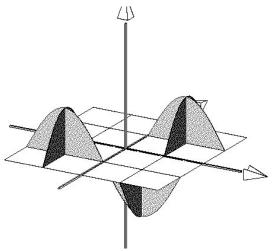
Zeichnen Sie jeweils die Kurve $z=f(\varphi)$ auf ein Blatt, das

ba) zu einem Zylinder $\{(x, y, z); x^2 + y^2 = 1\}$

bb) zu einem Zylinder $\{(x, y, z); x^2 + y^2 = 2\}$

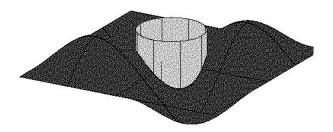
geformt werden kann und dann eine Spante des Blockbildes liefert.

Lösung 8.2b):



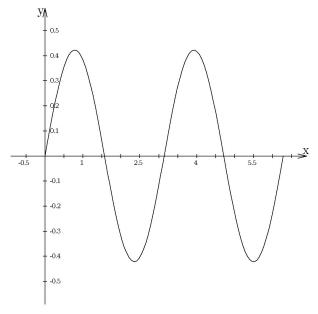
Aufgabe 8.2b): Blockbild der Fläche $z=f(x,y)=\sin(x)\cdot\sin(y)$ mit $-\pi\leq x,y\leq\pi$ Wenn für x und y jeweils die Zylinderkoordinaten eingesetzt werden, ergibt sich - für den Zylinder mit Radius 1:

$$z = \sin(\cos(\varphi)) \cdot \sin(\sin(\varphi))$$
 für $0 \le \varphi \le 2 \cdot \pi$



 $\begin{array}{l} \textit{Aufgabe 8.2b)} \colon \text{Blockbild der Fläche } z = f(x,y) = \sin(x) \cdot \sin(y) \text{ mit } -\pi \leq x, y \leq \pi, \\ \text{geschnitten mit dem Zylinder } \big\{ \left(x,y,z \right); x^2 + y^2 = 1 \,, \, -1 \leq z \leq 1 \, \big\} \end{array}$

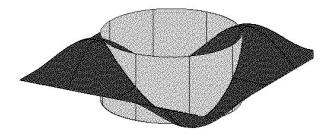
Die Abwicklung des oben dargestellten Zylinders hat dann folgende Form:



 $Aufgabe~8.2b): \text{Abwicklung der zylindrischen Spante} \\ \left\{ \left(x,y,z \right); x = \cos(\varphi), \ y = \sin(\varphi), \ z = \sin(\cos(\varphi)) \cdot \sin(\sin(\varphi)), \ 0 \leq \varphi \leq 2 \cdot \pi \right\}$

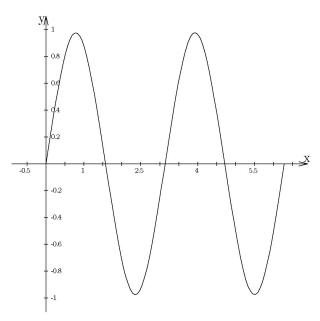
- für den Zylinder mit Radius 2:

$$z = \sin(\cos(2\cdot\varphi))\cdot\sin(\sin(2\cdot\varphi)) \quad \text{für} \quad 0 \le \varphi \le 2\cdot\pi$$



 $\begin{array}{l} \textit{Aufgabe 8.2b)} \colon \text{Blockbild der Fläche } z = f(x,y) = \sin(x) \cdot \sin(y), \\ \text{geschnitten mit dem Zylinder } \{\,(x,y,z)\,; x^2 + y^2 = 4\,\} \end{array}$

Die Abwicklung des oben dargestellten Zylinders hat dann die Form der gestrichelten Linie:



Aufgabe~8.2b): Abwicklung der zylindrischen Spante { $(x,y,z)\,; x=2\cdot\cos(\varphi),~y=2\cdot\sin(\varphi),~z=\sin(2\cdot\cos(\varphi))\cdot\sin(2\cdot\sin(\varphi))$ für $0\leq\varphi\leq2\cdot\pi$ }

8.2c) Tangentialebene

Berechnen Sie für die Fläche $z=\sin(x)\cdot\sin(y)$ die Tangentialebene in den Punkten $P_1=(x_1,y_1)=(\frac{\pi}{4},\frac{\pi}{4})$ und $P_2=(x_2,y_2)=(\frac{\pi}{2},\frac{\pi}{6})$ und zeichnen Sie diese jeweils in die Höhenkarte a) ein. Verwenden Sie dabei folgende Berandungen für die Tangentialebene im Punkt P_i : $x_i-\frac{\pi}{4}\leq x\leq x_i+\frac{\pi}{4}$ und $y_i-\frac{\pi}{4}\leq y\leq y_i+\frac{\pi}{4}$

Lösung von Aufgabe 8.2c):

Es ist

$$f_x = \cos(x) \cdot \sin(y)$$
 und $f_y = \sin(x) \cdot \cos(y)$

und daher

- für den Punkt P_1 :

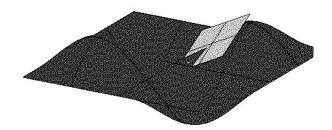
$$f_x(\frac{\pi}{4}, \frac{\pi}{4}) = \frac{1}{2}$$
 $f_y(\frac{\pi}{4}, \frac{\pi}{4}) = \frac{1}{2}$ $f(\frac{\pi}{4}, \frac{\pi}{4}) = \frac{1}{2}$

Dann ist die Tangentialebene in dem Punkt P_1 definiert durch

$$T = \{(x, y, z) \mid z = f(x_1, y_1) + f_x(x_1, y_1) \cdot (x - x_1) + f_y(x_1, y_1) \cdot (y - y_1)\}\$$

also

$$T = \left\{ (x, y, z) \mid z = \frac{1}{2} + \frac{1}{2} \cdot (x - \frac{\pi}{4}) + \frac{1}{2} \cdot (y - \frac{\pi}{4}) \right\} = \left\{ (x, y, z) \mid 2 \cdot x + 2 \cdot y - 4 \cdot z = \pi - 2 \right\}$$



Aufgabe 8.2c): Tangentialebene der Fläche $z=f(x,y)=\sin(x)\cdot\sin(y)$ im Punkt $P_1=(\frac{\pi}{4},\frac{\pi}{4})$

- für den Punkt $P_2 = (\frac{\pi}{2}, \frac{\pi}{6})$:

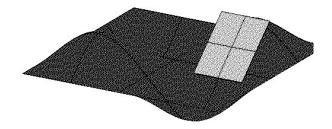
$$f_x(\frac{\pi}{2}, \frac{\pi}{6}) = 0$$
 $f_y(\frac{\pi}{2}, \frac{\pi}{6}) = \frac{1}{2} \cdot \sqrt{3}$ $f(\frac{\pi}{2}, \frac{\pi}{6}) = \frac{1}{2}$

Dann ist die Tangentialebene in dem Punkt P_2 definiert durch

$$T = \{(x, y, z) \mid z = f(x_2, y_2) + f_x(x_2, y_2) \cdot (x - x_2) + f_y(x_2, y_2) \cdot (y - y_2)\}$$

also

$$T = \left\{ (x, y, z) \mid z = \frac{1}{2} + \frac{1}{2} \cdot \sqrt{3} \cdot (y - \frac{\pi}{6}) \right\} = \left\{ (x, y, z) \mid 6 \cdot \sqrt{3} \cdot y - 12 \cdot z = \pi \cdot \sqrt{3} - 6 \right\}$$



Aufgabe 8.2c): Tangentialebene der Fläche $z = f(x, y) = \sin(x) \cdot \sin(y)$ im Punkt $P_2 = (\frac{\pi}{2}, \frac{\pi}{6})$ (Tangentialebene für $\frac{\pi}{2} - \frac{\pi}{4} \le x \le \frac{\pi}{2} + \frac{\pi}{4}$ und $\frac{\pi}{6} - \frac{\pi}{4} \le y \le \frac{\pi}{6} + \frac{\pi}{4}$

8.2d) (Extremwerte)

Bestimmen Sie (relative und absolute) Extremwerte im Bereich

$$B := \{(x, y) \mid -\pi \le x \le \pi, -\pi \le y \le \pi, \}$$

und vergleichen das Ergebnis mit Ihrer Zeichung.

Lösung 8.2d):

Zunächst sollen die relativen Extrema in B gesucht werden: Es ist

$$f_x = \cos(x) \cdot \sin(y)$$
 und $f_y = \sin(x) \cdot \cos(y)$

Folglich führt

1. die Bedingung $f_x(x_e, y_e) = 0$ zu den Lösungen $(\pm \frac{\pi}{2}, y)$ oder $(x, \pm \pi)$ oder (x, 0)

2. die Bedingung $f_x(x_e,y_e)=0$ zu den Lösungen $(\pm\pi,y) \text{ oder } (0,y) \text{ oder } (x,\pm\frac{\pi}{2})$

Es sollen beide Bedingungen gleichzeitig gelten, also gibt es 13 mögliche Extremwerte:

$$(x_{1}, y_{1}) = (\frac{\pi}{2}, \frac{\pi}{2}) \qquad (x_{2}, y_{2}) = (-\frac{\pi}{2}, \frac{\pi}{2}) \qquad (x_{3}, y_{3}) = (\pi, \pi)$$

$$(x_{4}, y_{4}) = (\pi, -\pi) \qquad (x_{5}, y_{5}) = (-\pi, \pi) \qquad (x_{6}, y_{6}) = (-\pi, -\pi)$$

$$(x_{7}, y_{7}) = (\pi, 0) \qquad (x_{8}, y_{8}) = (-\pi, 0) \qquad (x_{9}, y_{9}) = (0, \pi)$$

$$(x_{10}, y_{10}) = (0, -\pi) \qquad (x_{11}, y_{11}) = (0, 0) \qquad (x_{12}, y_{12}) = (\frac{\pi}{2}, -\frac{\pi}{2})$$

$$(x_{13}, y_{13}) = (-\frac{\pi}{2}, -\frac{\pi}{2})$$

Nun soll für jeden dieser Punkte geprüft werden, ob die hinreichende Bedingung erkennen läßt, ob es sich wirklich um ein Extremum handelt - und wenn ja, dann um welches.

Es ist nach (2)

$$D(x,y) = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = \begin{vmatrix} -\sin(x) \cdot \sin(y) & \cos(x) \cdot \cos(y) \\ \cos(x) \cdot \cos(y) & -\sin(x) \cdot \sin(y) \end{vmatrix}$$

$D(x_1, y_1) = 1, f_{xx} < 0$: Max	$D(x_2, y_2) = 1, f_{xx} > 0$: Min	$D(x_3, y_3) = -1: SP$
$D(x_4, y_4) = -1: SP$	$D(x_5, y_5) = -1: SP$	$D(x_6, y_6) = -1: SP$
$D(x_7, y_7) = -1$: SP	$D(x_8, y_8) = -1: SP$	$D(x_9, y_9) = -1$: SP
$D(x_{10}, y_{10}) = -1$: SP	$D(x_{11}, y_{11}) - 1$: SP	$D(x_{12}, y_{12}) = 1, f_{xx} > 0$: Min
$D(x_{13}, y_{13}) = 1, f_{xx} > 0$: Max		

$$SP = Sattelpunkt$$

Also gibt es nur die vier relativen Extrema (x_1, y_1) , (x_2, y_2) , (x_{12}, y_{12}) und (x_{13}, y_{13}) ; die maximale Höhe ist +1 und die minimale Höhe ist -1.

Auf den Rändern gilt:

für $x = \pi$ ist z = 0, also kein absolutes Extremum.

für $x = -\pi$ ist z = 0, also kein absolutes Extremum.

für $y = \pi$ ist z = 0, also kein absolutes Extremum.

für $y = -\pi$ ist z = 0, also kein absolutes Extremum.

Aufgabe 8.3:

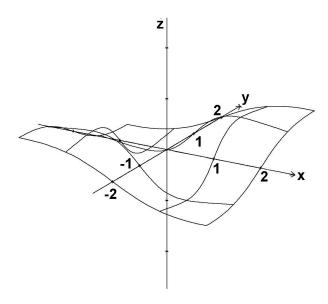
Veranschaulichen Sie sich die durch die Funktion

$$z = f(x, y) = \frac{x \cdot y}{x^2 + y^2}$$

beschriebene Fläche im Bereich $B:=\{(x,y)\,|\, -2\leq x\leq 2\,,\, 2\leq y\leq 2\,,\,\}$

8.3a) durch eine Höhenkarte für die Höhen $z_0=0$ und $z_1=\frac{1}{4}$

Lösung 8.3a):

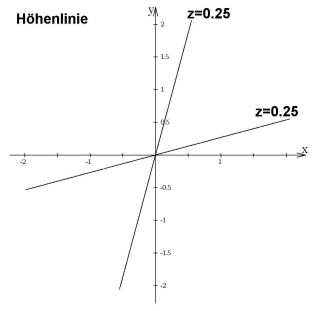


$$Aufgabe$$
 8.3: Fläche $z=f(x,y)=\frac{x\cdot y}{x^2+y^2}$

 $z_0=0$ liefert x=0oder y=0- im Punkt (0,0)ist die Fläche nicht definiert.

 $z_1 = \frac{1}{4}$ liefert die Kurven

$$\frac{1}{4} = \frac{x \cdot y}{x^2 + y^2}$$
 oder $x^2 + y^2 = 4 \cdot x \cdot y$



Aufgabe 8.3a): Höhenlinien der Höhe $z_1 = \frac{1}{4}$ der Fläche $z = f(x,y) = \frac{x \cdot y}{x^2 + y^2}$ für $-2 \le x \le 2$ und $-2 \le y \le 2$

8.3b) durch ein Blockbild

Erzeugen Sie die Spanten aus den Kurvenscharen $z = f(x, y_i)$ mit $y_i = -2 + i \ (i = 0, ..., 4) \text{ und } z = f(x_i, y) \text{ mit } x_i = -2 + i \ (i = 0, ..., 4).$

Lösung 8.3b):

In der Gleichung der Fläche $z = f(x,y) = \frac{x \cdot y}{x^2 + y^2}$ werden zunächst die Ebenen y_i betrachtet: $z = f(x, y_0)$ mit $y_0 = -2$: $z = \frac{-x \cdot 2}{x^2 + 4}$ (durchgezogene Linie)

$$z = f(x, y_0)$$
 mit $y_0 = -2$: $z = \frac{-x \cdot 2}{x^2 + 4}$ (durchgezogene Linie)

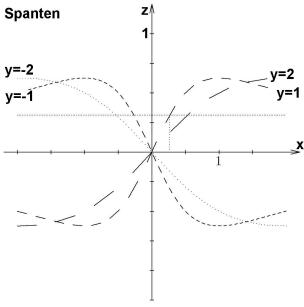
$$z=f(x,y_1)$$
mit $y_1=-1$: $z=\frac{-x\cdot 1}{x^2+1}$ (100 Striche)

$$z = f(x, y_2)$$
 mit $y_2 = 0$: $z = 0$ (im Punkt $(0, 0)$ ist die Fläche nicht definiert)

$$z=f(x,y_3)$$
mit $y_3=1$: $z=\frac{x\cdot 1}{x^2+1}$ (30 Striche)

$$z = f(x, y_4)$$
 mit $y_4 = 2$: $z = \frac{x \cdot 2}{x^2 + 4}$ (15 Striche)

Diese einzelnen Spanten sind im folgenden Bild für $-2 \le x \le +2$ dargestellt.



Aufgabe 8.3b): Spanten-Kurven der Fläche $z=f(x,y)=\frac{x\cdot y}{x^2+y^2}$

8.3c) Untersuchen Sie die Fläche in der Umgebung des Nullpunktes (0,0), indem Sie zunächst f(0,0) definieren und dann versuchen, eine Tangentialebene in (0,0) zu bestimmen.