Dirk Windelberg

$\begin{array}{c} \textbf{NANO-GEOMETRY} \\ \textbf{detection of 'unknown' pattern} \end{array}$

September 12^{th} , 2008, Varna (Bulgaria)

D. Windelberg

AG Qualität

Leibniz Universität Hannover

Mathematik

My lecture is dedicated to 75th birthday of Prof. Grozio Stanilov

I will talk about

COMPUTER METHODS IN THE SCIENCE AND IN THE EDUCATION

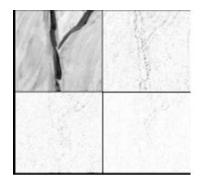
combined with geometry.

Motivation is given

- by the close connection to material science: Different kinds of steel are austenite and martensite:
 - "is a given steel austenite or martensite?"
- by the problem of detecting the origin of paintings: Just at present neural network is used as a new tool for solving the question:

"was a given antique originally produced by van Gogh?"

D. Windelberg: nano geometry marten4.tex (18. Dezember 2012)



screening of a small part of the painting:

- 1. from color to steps of gray
- 2. from steps of gray to "color 0" or "color 1"

Taylor, R.P., Micolich, A.P. and Jonas, D.: "Fractal analysis of Pollock's drip paintings". Nature 399 (1999), 422

0 abstract

Some properties of metal can be detected by analyzing the geometry of a polished cut image.

During the solidification of steel ",lath martensite" can appear, and this kind of steel can be seen by the pattern of a polished cut:

> "lath martensite is made up of lances, which form packages of close parallel lances ..." (wikipedia)

This formulation and the collaboration with material scientists gave a stimulation to this lecture, which will show

a geometrical and a statistical description of the "direction" of a lance. Such a definition is necessary for an automatic analyse to detect "lath martensite".

detection of unknown pattern in material science (nano geometry)

- 1 structure of martensite steel
- 2 definition of "elliptic spot"
- 3 statistical solutions

1 structure of martensite steel

- 1.1 martensite steel (properties)
- 1.2 iron lattice (ferrit) with a carbon-atom outside)
- 1.3 austenite lattice (one carbon-atom inside of a ferrit-unit)
- 1.4 austenite lattice (13 carbon inside of a ferrit-unit)
- 1.5 two ferrit units with 2% carbon
- 1.6 two ferrit units with 17% carbon
- 1.7 preparation for changing from fcc to bcc
- 1.8 from two fcc-units to one bcc-unit

1.1 martensite steel (properties)

Only a small part of the produced steel is used for martensite steel (german metallurgist Adolf Martens (1850-1914)), which is

- high-strength (hochfest), and
- highly wear-resistant (hochverschleißfest)

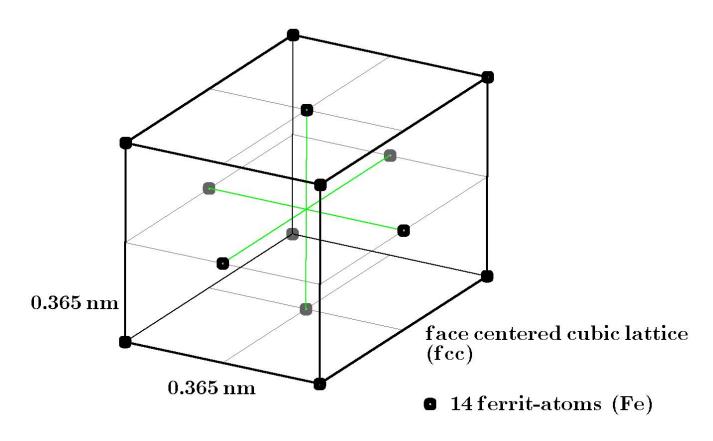
and is a necessary material for cutting tools.

Here we will introduce an "austenite-unit" as a system of 14 ferrit atoms which represent a face-centered cubic lattice (kubisch-flächenzentriertes Gitter)

But we are looking for martensite!

If we accelerate the cooling process we can sometimes get martensite which is represented by body-centered cubic lattices (kubisch-raumzentriertes Gitter).

1.2 ferrit lattice with an (imaginary) carbon-atom outside



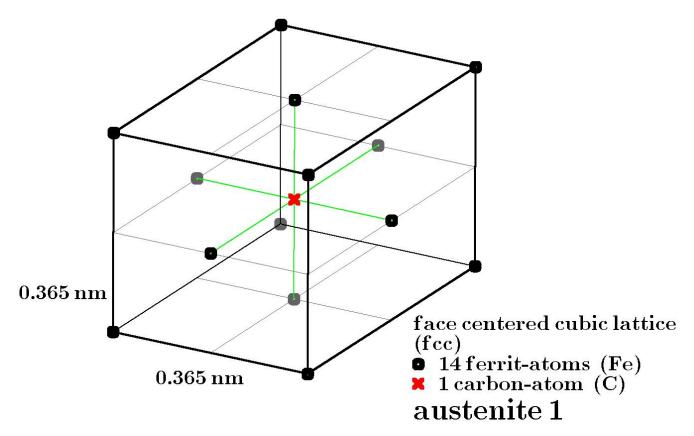
picture 1.1: ferrit unit (14 ferrit atoms)

atomic weight of Fe: 56 atomic weight of C: 12

atomic diameter of Fe: 0.30 nm atomic diameter of C: 0.14 nm

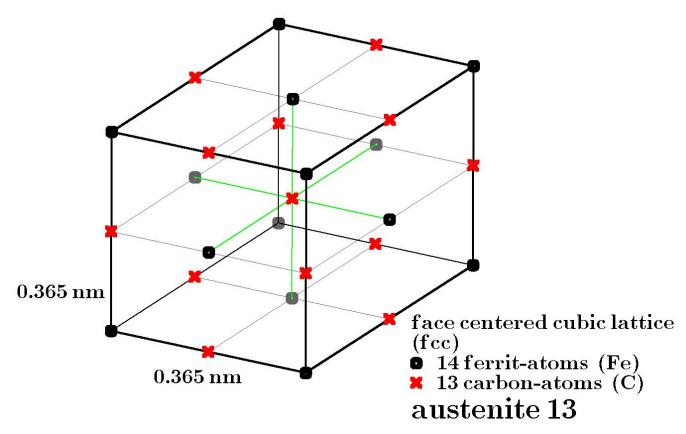
concentration of C: 0.00%

1.3 austenite lattice (one carbon-atom inside of a ferrit-unit)



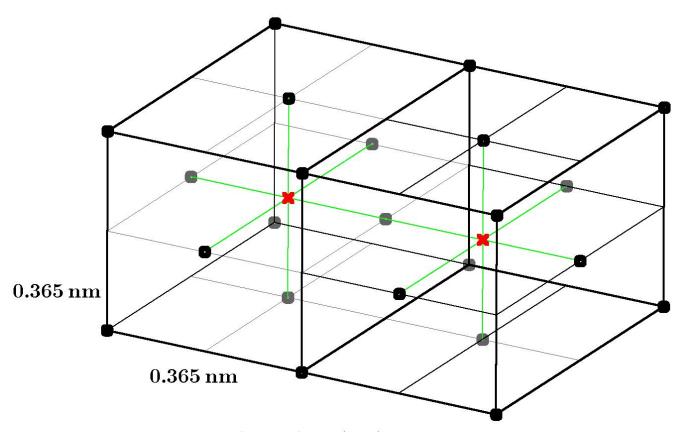
picture 1.2: austenite: ferrit with 14 ferrit atoms and 1 carbon atom atomic weight of Fe: 56 atomic weight of C: 12 concentration of C: 1.50%

1.4 austenite lattice (13 carbon inside of a ferrit-unit)



picture 1.3: ferrit with 14 ferrit atoms and 13 carbon atoms atomic weight of Fe: 56 atomic weight of C: 12 concentration of C: 16.60%

1.5 two ferrit units with 2% carbon



two face centered cubic lattices (fcc)

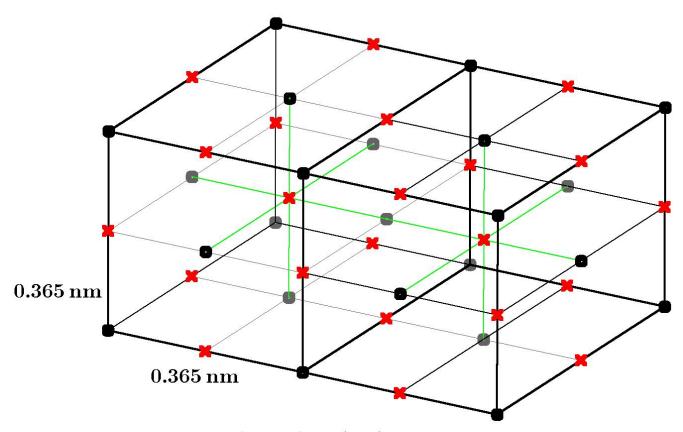
■ 23 ferrit-atoms (Fe)

■ 2 carbon-atoms (C)

austenite 2

picture 1.4: ferrit with 23 ferrit atoms and 2 carbon atoms concentration of C: 1.83%

1.6 two ferrit units with 17% carbon



two face centered cubic lattices (fcc)

■ 23 ferrit-atoms (Fe)

■ 22 carbon-atoms (C)

austenite 22

picture 1.5: ferrit with 23 ferrit atoms and 23 carbon atoms concentration of C: 17.01%

During solidification from the liquid phase of ferrit (or austenite) we find between $1392^{\circ}C$ down to $911^{\circ}C$ a fcc-lattice as we considered before:

atom diameter of Fe:

 $D = 0.25 \, nm$

atom diameter of C:

 $D = 0.15 \, nm$

edge length of a austenite-unit:

 $a_{fcc} = 0.365 \, nm$

On the edges of a unit the atoms do not touch each other, because there remains an interval $a_{fcc} - D = 0.11 \, nm$.

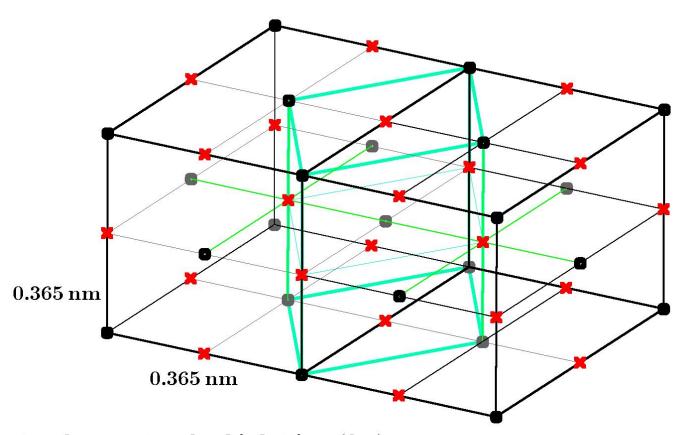
In our last picture we considered two ferrit units (total 17% carbon), and we will look if it is possible to model the change from fcc to bcc: The change to martensite appears in a very short time:

There is no possibility to diffusion, and therefore no exchange of atoms will happen: only a common motion of groups of atoms seems to be possible.

We have to find a group of atoms which can move to a bcc-unit

edge length of a *bcc*-unit (martensite): $a_{bcc,z} = 0.297 \, nm$ in z-direction edge length of a *bcc*-unit (martensite): $a_{bcc,x} = 0.286 \, nm \text{ in } x, y\text{-direction}$

1.7 preparation for changing from fcc to bcc



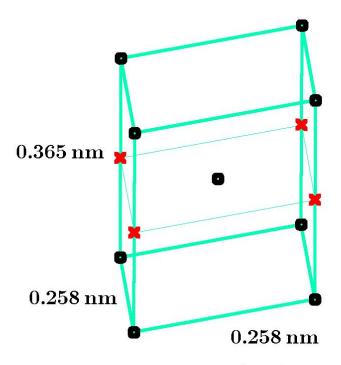
two face centered cubic lattices (fcc)

- 23 ferrit-atoms (Fe)
- **x** 22 carbon-atoms (Ć)

austenite 22

rhombus

picture 1.6: using the system of 23 ferrit and 23 carbon atoms from picture 1.5 we will find a rhombus inside - as a group of atoms which can move.



tetragonal body centered cubic lattice (bcc)

- 9 ferrit-atoms (Fe)
- **x** 4 carbon-atoms (Ć)

martensite

rhombus

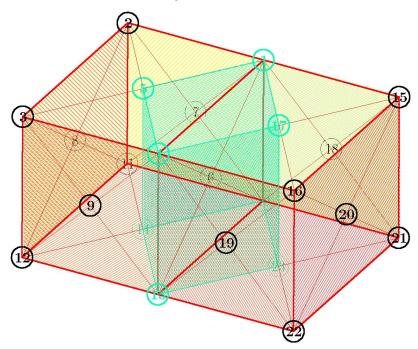
picture 1.7: rhombus from picture 1.6

the dimensions have to change during parts of a second:

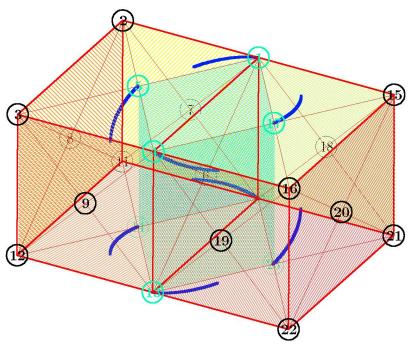
in z-direction: from $a_{fcc} = 0.365 \, nm$ to $a_{bcc,z} = 0.297 \, nm$ in z-direction

in x- and y-direction: from 0.258 nm to $a_{bcc,x} = 0.286 nm$ in x, y-direction

1.8 from two fcc-units to one bcc-unit



picture 1.8: two austenite fcc-units with "virtual lattice" edge length $a_A = 0.365 \, nm$, atom diameter $0.25\,nm$



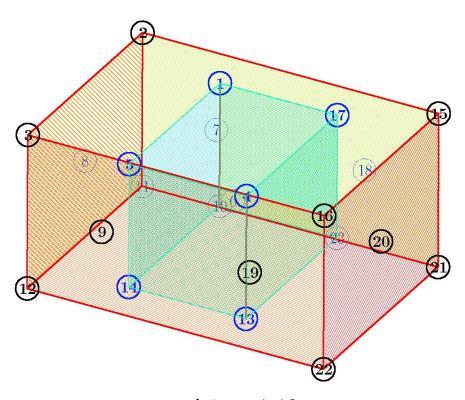
picture 1.9: the "virtual tetragonal bcc-unit" has to center with 45°, to shrink in z-direction and to increase in x- and y-direction

Deformation from austenit martensite means:

- center with 45°
- shrink in z-direction **from** $a_{fcc} = 0.365 \, nm$ to $a_{bcc,z} = 0.297 \, nm$ in z-direction
- increase in x- and y-direction from 0.258 nm to $a_{bcc,x} = 0.286 nm$

and then we will get "martensite". Remark: volume of a martensite-unit:

$$v_{mart} = 0.286^2 \cdot 0.365 = 0.03 \, nm^3 = 3 \cdot 10^{11} \, \mu \, m^3$$



picture 1.10: "virtual tetragonal body-centered lattice" martensite

But consider: a lance of martensite of thickness $h = 0.5 \,\mu\,m$ has an enlargement of at least $v_{lance} = 0.5^2 \times 3.5 \,\mu\,m^3 = 0.875 \,\mu\,m^3$ - therefore such a lance consists of

more than $3 \cdot 10^{10}$ martensit-units.

2 definition of "elliptic spot"

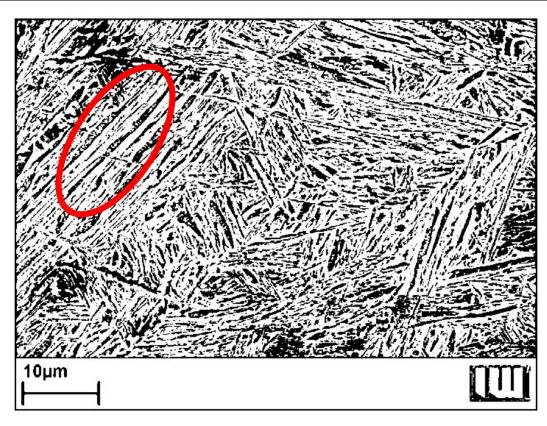
- 2.1 problem
- 2.2 colored plane and color function
- 2.3 spot of color 1
- **2.4** area a(S) of a spot S of color 1
- **2.5** interval $[P_1, P_2]$ in a spot S of color 1
- 2.6 circumference U_S of a spot S of color 1
- 2.7 length $d(U_S)$ of the circumference of a spot S of color 1
- 2.8 dense spot
- **2.9** distance $d(P_1, P_2)$ between two pixels P_1 and P_2
- 2.10 maximal length h_S of a spot S
- **2.11** midpoint of an interval $[P_1, P_2]$ of a spot S
- 2.12 width w_S of a dense spot S
- 2.13 elliptic spot
- 2.14 direction of an elliptc spot
- 2.15 (appendix) pixel-rotation

2.1 problem

By etching a cut of (martensite) steel we can get a "polished cut image", and we can choose a coordinate-system in a, natural way".

We have to see

"packages of close parallel lances which are smaller than $1 \mu m$ " (wikipedia)



picture 2.1: selected grains of martensite steel

Nevertheless, we see

"packages $A(\alpha,n)$ of n close parallel lances with direction angle α "

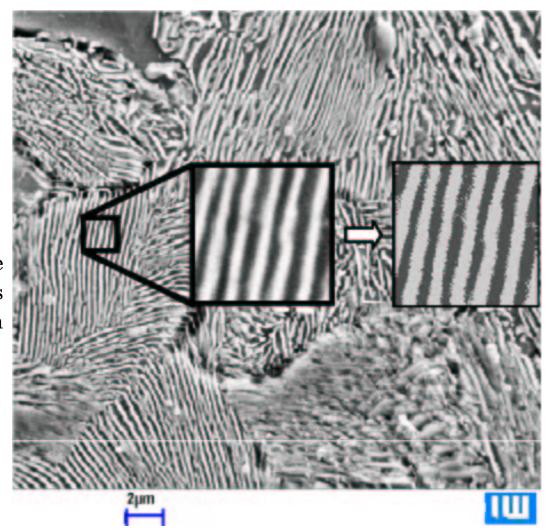
In my lecture last year in Varna I gave some definitions and instructions for detecting a direction

angle:

But at first we have to describe this picture; therefore we have to define a coordinate system of a nano geometry with pixels.

remark: In *picture 2.1* we have not only black and white colors but also some levels of grey, which we will attach to 0 or 1.

picture 2.2: rough discretization of picture 2.1



From this rough discretization (,,screening") 1 pixel $\approx 200 \, nm \times 200 \, nm$ we get a nano geometry which has black and white points only.

Here we try to find

packages $A(\alpha, n)$ of n close parallel lances of black color with direction angle α

in a finite coordinate system.

Then we has to ask if these packages define a martensite steel.

2.2 colored plane and color function

A "colored plane" (P, f) is a (finite) set

$$P_{(m,n)} = \{(x,z) \in \mathbb{N} \times \mathbb{N} , 0 \le x \le m , 0 \le z \le n \}$$

and a function

$$f: P_{(m,n)} \to \{0,1\}$$

which we will call "color-function".

(we will use P instead of $P_{(m,n)}$.)

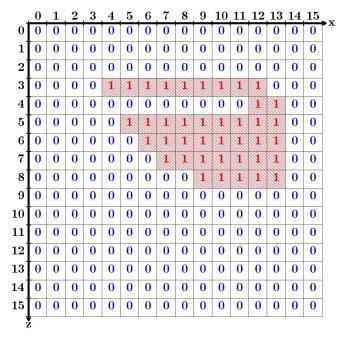
2.3 spot of color 1

Let
$$S \subseteq \{(x, z) \in (P, f), f(x, z) = 1\}$$
 be a subset of color 1 in a colored plane (P, f) and $z_{min} := \min_{(x, z) \in S} \{z\}$ and $z_{max} := \max_{(x, z) \in S} \{z\}$

S is called a "spot of color 1", if the following conditions are valid:

- for each row z with $z_{min} < z \le z_{max}$ there exists $|x_m(z) \in \mathbb{N}|$ with $(x_m(z), z) \in S$ and $(x_m(z), z - 1) \in S$
- for each row z with $z_{min} \leq z \leq z_{max}$ there exist $|x_a(z)|$ and $|x_e(z)|$ such that $x_a(z) \le x \le x_e(z) \quad \forall (x, z) \in S$

spot S of pixels of color 1:



picture 2.3: emple of a "spot of color 1"

or if the following conditions are valid:

There exist

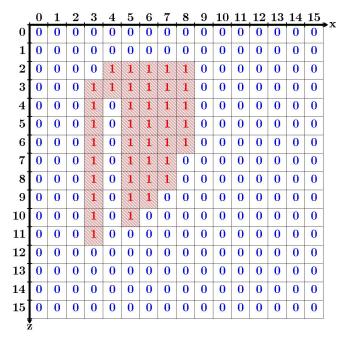
$$x_{min}(S) := \min_{z_{min} \le z \le z_{max}} \{x_{min}(z)\}$$
 and $x_{max}(S) := \max_{z_{min} \le z \le z_{max}} \{x_{max}(z)\}$

with

- for each column x with $x_{min}(S) < x \le x_{max}(S)$ there exists $|z_m(x) \in \mathbb{N}|$ with $(x, z_m(x)) \in S$ and $(x - 1, z_m(x)) \in S$
- for each column x with $x_{min}(S) \le x \le x_{max}(S)$ there exist $|z_a(x)|$ and $|z_e(x)|$ such that

$$z_a(x) \le z \le z_e(x) \quad \forall (x, z) \in S$$

spot S of pixels of color 1:



picture 2.3a

2.4 area a(S) of a spot S of color 1

For a spot S of color 1

- with rows between z_{min} and z_{max} and
- with functions $x_a(z)$ and $x_e(z)$ for each row z with $z_{min} \le z \le z_{max}$

we define the "area a(S) of a spot S"

$$a(S) := \sum_{z=z_{min}}^{z=z_{max}} (x_e(z) - x_a(z) + 1)$$

or

$$a(S) := \sum_{x=x_{min}}^{x=x_{max}} (z_e(x) - z_a(x) + 1)$$

remark: In *picture 2.3* we have a(S) = 9 + 10 + 9 + 8 + 7 + 5 = 48.

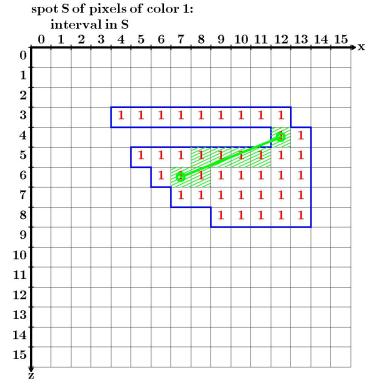
2.5 interval $[P_1, P_2]$ in a spot S of color 1

For two pixels

$$P_1 = (x_1, z_1) \in S$$
 and $P_2 = (x_2, z_2) \in S$
the "interval $[P_1, P_2]$ "

is defined as the set

$$I := \left\{ \begin{array}{l} (x, z) \in S, \\ \exists u \ \ \text{with} \ x - 0.5 \le u < x + 0.5 \\ \text{such that} \\ z - 0.5 \le \\ \underline{(z_2 - z_1) \cdot u + (z_1 \cdot x_2 - x_1 \cdot z_2)} \\ x_2 - x_1 \\ < z + 0.5 \end{array} \right\}$$



picture 2.4

2.6 circumference U_S of a spot S of color 1

Let S be a spot of color 1 with rows between z_{min} and z_{max} ,

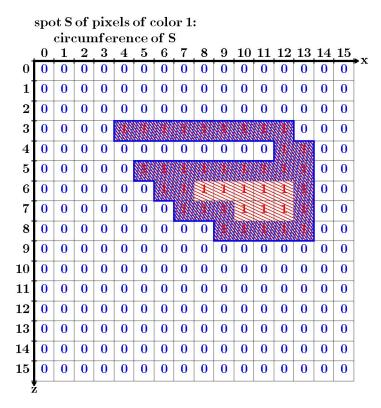
and let $x_a(z)$ and $x_e(z)$ be functions for each row z with $z_{min} \leq z \leq z_{max}$.

The ordered set

$$U_{S} := \left\{ egin{array}{c} \left(egin{array}{c} x_{a}(z_{min}) \\ z_{min} \end{array}
ight), & \left(egin{array}{c} x_{e}(z_{min}) \\ z_{min} \end{array}
ight), & \left(egin{array}{c} x_{e}(z_{min}+1) \\ z_{min}+1 \end{array}
ight), & \left(egin{array}{c} x_{a}(z_{min}+2) \\ z_{min}+2 \end{array}
ight), & \left(egin{array}{c} x_{e}(z_{min}+2) \\ z_{min}+2 \end{array}
ight), & \left(egin{array}{c} x_{e}(z_{min}+2) \\ z_{min}+2 \end{array}
ight), & \left(egin{array}{c} x_{e}(z_{max}) \\ z_{max} \end{array}
ight)$$

of pixels of S is called

", circumference U_S of the spot S of color 1"



picture 2.5: circumference of S

Let S be a spot of color 1 with columns between x_{min} and x_{max} ,

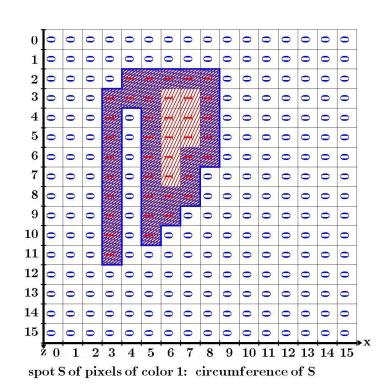
and let $z_a(x)$ and $z_e(x)$ be functions for each column x with $x_{min} \leq x \leq x_{max}$.

The ordered set

$$\mathbf{or} \qquad U_{S} := \left\{ \begin{array}{l} \left(\begin{array}{c} z_{a}(x_{min}) \\ x_{min} \end{array} \right), & \left(\begin{array}{c} z_{e}(z_{min}) \\ x_{min} \end{array} \right), \\ \left(\begin{array}{c} z_{a}(x_{min}+1) \\ x_{min}+1 \end{array} \right), & \left(\begin{array}{c} z_{e}(z_{min}+1) \\ x_{min}+1 \end{array} \right), \\ \left(\begin{array}{c} z_{a}(x_{min}+2) \\ x_{min}+2 \end{array} \right), & \left(\begin{array}{c} z_{e}(z_{min}+2) \\ x_{min}+2 \end{array} \right), \\ \vdots, & \vdots, \\ \left(\begin{array}{c} z_{a}(x_{max}) \\ x_{max} \end{array} \right), & \left(\begin{array}{c} z_{e}(x_{max}) \\ x_{max} \end{array} \right) \end{array} \right\}$$

of pixels of S is called

",circumference U_S of the spot S of color 1"



picture 2.5a): circumference of S

remark 2.5a)

Let
$$x_a(S) := \min_{z_{min} \le z \le z_{max}} \{x_a(z) \in S\}$$
 and $x_e(S) := \max_{z_{min} \le z \le z_{max}} \{x_e(z) \in S\}$.

For each x with $x_a(S) \le x \le x_e(S)$ there exist pixels $(x, z_P) \in U_S$.

remark 2.5b)

Let
$$x_a(S) := \min_{\substack{z_{min} \le z \le z_{max} \\ z_{min} \le z \le z_{max}}} \{x_a(z) \in S\}$$
 and $x_e(S) := \max_{\substack{z_{min} \le z \le z_{max}}} \{x_e(z) \in S\}$.

For each x with $x_a(S) \le x \le x_e(S)$ there exist pixels $(x_P, z) \in U_S$

2.7 length $d(U_S)$ of the circumference of a spot S of color 1

The length $d(U_P)$ of the circumference of a pixel P is defined as 4.

The length $d(U_S)$ of the circumference of a spot S of color 1 with rows between z_{min} and z_{max}

and $x_a(z) \le x \le x_e(z)$ for each row z with $z_{min} \le z \le z_{max}$ is defined as

$$d(U_S) := (x_e(z_{min}) - x_a(z_{min}) + 1)$$

$$+ \sum_{z=z_{min}}^{z=z_{max}-1} [2 + |x_a(z) - x_a(z+1)| + |x_e(z) - x_e(z+1)|]$$

$$+ (x_e(z_{max}) - x_a(z_{max}) + 1)$$

remark: In *picture 2.5* we have

$$d(U_S) = (12 - 4 + 1)$$

$$+[2 + 1 + 1] + [2 + 1 + 0] + [2 + 1 + 0] + [2 + 1 + 0] + [2 + 2 + 0] + (13 - 9 + 1)$$

$$= 9 + 4 + 3 + 3 + 3 + 4 + 5 = 31$$

2.8 dense spot

In picture 2.1 we chose the coordinate-system in a "natural way" - that means without any rotation. But if the cut of martensite steel is rotated, then it is possible, that a spot which has cavities of small dimension in one position can loose this property after rotation (we will show this in part 2.14).

Therefore we will define a

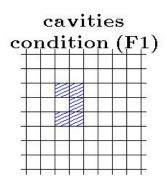
dense spot

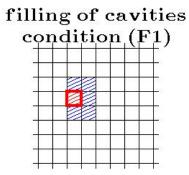
if all cavities which are

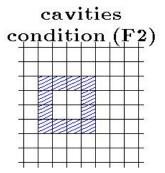
smaller than γ^2 with $\gamma = 0.5 \,\mu\,m = \frac{1}{2} \cdot \text{width of a lance}$

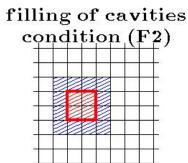
are filled with color 1.

Therefore we fill all cavities which are smaller than γ^2 .





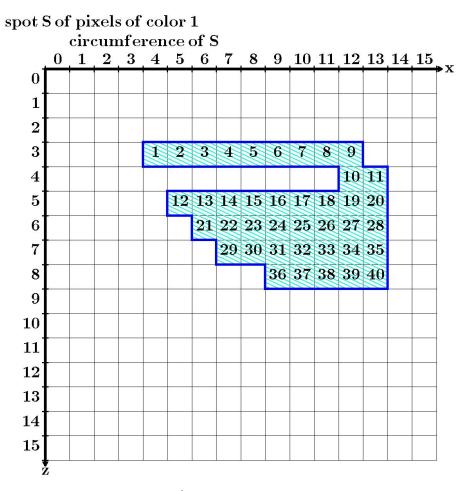




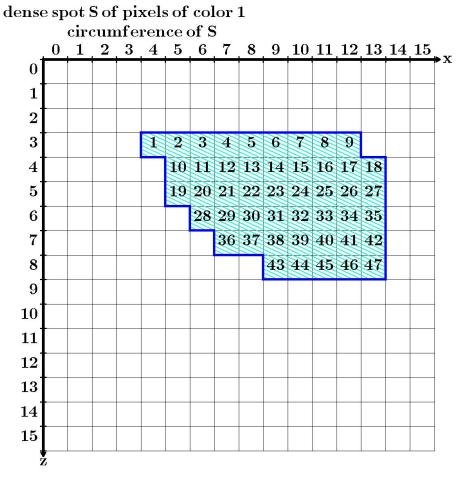
picture 2.6: cavities and its filling

remark: $1 \mu m = \text{width of 5 pixels}$ or $\gamma^2 \approx 2 \times 2 \text{ pixels}$.

example picture 2.3: cavities and its filling for getting a dense spot



picture 2.3: numbered elements of the spot S



picture 2.7: spot S, filled with cavities, which are smaller than γ^2

2.9 distance $d(P_1, P_2)$ between two pixels P_1 and P_2

The "distance between two pixels"

$$P_1 = (x_1, z_1)$$
 and $P_2 = (x_2, z_2)$

is defined as the euclidean distance

$$d(P_1, P_2) = \sqrt{(x_1 - x_2)^2 + (z_1 - z_2)^2}$$
.

2.10 maximal length h_S of a spot S

For a spot S of color 1 there exists a real number h_S with

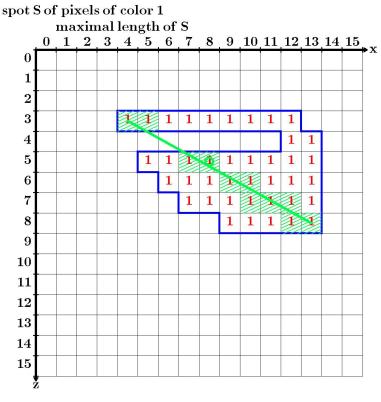
$$h_S = \max_{P_1, P_2 \in U_S} \{d(P_1, P_2)\}$$

 h_S is called the "maximal length of S".

remark:

In em picture 2.8, we have $P_1 = (4,3)$ and $P_2 =$ (13, 8)

and therefore
$$h_S = \sqrt{5^2 + 9^2} = \sqrt{106} \approx 10.3$$



picture 2.8

remark 2:

In general, the maximal length can be represented not only by P_1 and P_2 , but also by other pixels.

2.11 midpoint of an interval $[P_1, P_2]$ of a spot S

Let $P_1 = (x_1, z_1) \in S$ and $P_2 = (x_2, z_2) \in S$. We define a "midpoint"

$$M(P_1, P_2) = (x_M, z_M) := \left(INT\left[\frac{1}{2} \cdot (x_1 + x_2)\right], INT\left[\frac{1}{2} \cdot (z_1 + z_2)\right]\right)$$

2.12 width of a dense spot S

If $M(P_1, P_2)$ is not a pixel of the dense spot S, a "width" of the spot S is not defined.

Now let us assume that S is a dense spot and $M(P_1, P_2)$ is a pixel of S.

We choose two pixels of S with

$$d(P_1, P_2 = h_S)$$

and

$$M(P_1, P_2)$$
 is a pixel of S

Then we construct a line g_{\perp} with $M(P_1, P_2) \in g_{\perp}$, which is normal to the line $\overline{P_1, P_2}$:

$$g_{\perp} := \{(x, z) \in \mathbb{R}^2, (z_1 - z_2) \cdot (z - z_M) = -(x_1 - x_2) \cdot (x - x_M)\}$$

This line meets the circumference U_S in (at least) two points which we call P_3 and P_4 .

We choose

$$P_3 = (x_3, z_3) \in U_S$$
 and $P_4 = (x_4, z_4) \in U_S$ with $x_3 \le x_4$

remark: If the midpoint $M(P_1, P_2)$ is a pixel of the dense spot S, then the two points P_3 and P_4 and also the distance $d(P_1, P_2)$ are unique determined.

The , width of the dense spot S" is defined as

$$w_S := \max_{d(P_1, P_2) = h_S} d(P_3, P_4), \text{ if } M(P_1, P_2) \text{ is a pixel of } S$$

2.13 elliptic spot

elliptic spot $S(h_S, w_S)$

Let S be a dense spot.

For every quadrupel $[P_1, P_2, P_3, P_4]$ with $d(P_1, P_2) = h_S$, where $M(P_1, P_2)$ is a pixel of S, and where w_S is the width of S we will say that S is an

"elliptic spot $S(h_S, w_S)$ "

if

$$7 \cdot w_S \leq h_S$$

2.14 direction of an elliptic spot

In an elliptic spot S,

- let n be the number of pairs (P_1, P_2) where $P_1, P_2 \in U_S$ with $d(P_1, P_2) = h_S$, and
- for $i \leq n$ let α_i be the direction of $\overline{P_{1,i}, P_{2,i}}$, and
- let $w_{S,i} := \max_{d(P_{1.i}, P_{2.i}) = h_S} d(P_{3,i}, P_{4,i})$ with $h_S \ge 7 \cdot w_{S,i}$.

Then the "direction α of the elliptic spot" is defined as

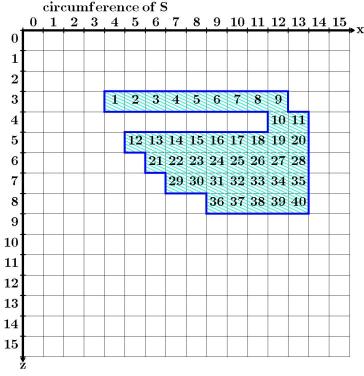
$$\alpha = \frac{1}{n} \cdot \sum_{i=1}^{n} \alpha_i$$

2.15 (appendix) pixel-rotation

We define the "center (x_C, y_C) of a spot $S = \{(x_i, z_i) \in \mathbb{N}^2, 1 \le i \le n \}$ " in the natural way:

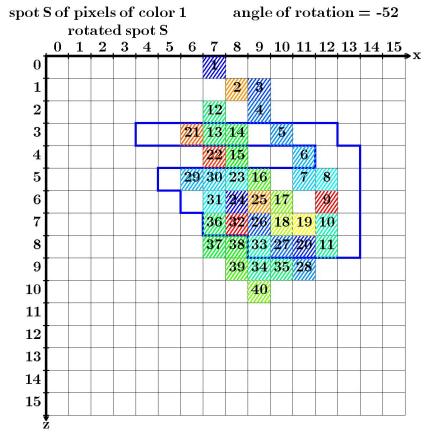
$$x_C := INT\left(rac{1}{n}\cdot\sum_{i_1}^n x_i
ight) \quad ext{ and } \quad y_C := INT\left(rac{1}{n}\cdot\sum_{i_1}^n y_i
ight)$$

spot S of pixels of color 1



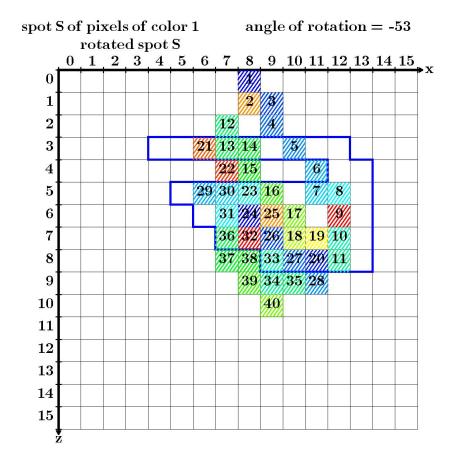
picture 2.9: numbered elements of picture 2.3

Let us rotate all pixels of the spot S:



picture 2.10:

spot S rotated at angle -52° with the center of S



picture 2.11:

spot S rotated at angle -53° with the center of S

result: it is necessary to fill all cavities after rotation (and also before).

Therefore we introduced "dense spots"!

3 statistical solutions

- 3.1 Hough-Transformation
- 3.2 example
- 3.3 regression

3.1 Hough-Transformation

Again we want to determine the direction of one lance in martensite steel.

That means:

For a grid of pixels of color 1 we want to define a direction

We consider a grid of $m \times n$ pixels.

let t be the number of pairs (P_1, P_2) of pixels of color 1, with $P_1 \neq P_2$.

- 1. For every pair (P_1, P_2) we calculate the direction α of $\overline{P_1, P_2}$
- 2. for every angle α ($0 \le \alpha < 180^{\circ}$) we calculate the probability $W(\alpha)$ for the direction α .

3.2 example



picture 3.1:

green spot with main direction $\alpha = 0^{\circ}$ and maximal direction $\varphi_{max} = \pm 8^{\circ}$. red spot with main direction $\alpha = 0^{\circ}$ and maximal direction $\varphi_{max} = 81^{\circ} \pm 9^{\circ}$. If we calculate

the probability $W(\alpha)$ for every angle α ($0 \le \alpha < 180^{\circ}$) then we will find:

green spot

there are 990 direction vectors α_i , and it is $-1.5^{\circ} \le \alpha_i \le 1.5^{\circ}$ for 32 % of all these direction vectors (this result is in accordance with our expectation)

red spot

there are 990 direction vectors α_i , and it is $73.5^{\circ} \le \alpha_i \le 76.5^{\circ}$ for 16 % of all these direction vectors and it is $76.5^{\circ} < \alpha_i \le 79.^{\circ}$ for 14 % of all these direction vectors (this result is not in accordance with our expectation)

3.3 regression

There exists the procedure "simple linear regression", and it is possible to use this procedure to find a direction of a spot. But there are two "lines of regression", and no one of these lines are in accordance with our expectation.

 $0\; 0\; 0\; 0\; 0\; 0\; 0\; 1\; 1\; 1\; 1\; 1\; 1\; 1\; 1\; 1\; 1\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0$ $0\; 0\; 0\; 0\; 0\; 0\; 1\; 1\; 1\; 1\; 1\; 1\; 1\; 1\; 1\; 1\; 1\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0$ 1111111111111100000000111110000 $0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 1\; 1\; 1\; 1\; 1\; 1\; 1\; 1\; 1\; 1\; 1\; 1\; 0\; 0\; 0\; 0\; 0\; 0\; 0$ $0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0$ $0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 1\; 1\; 1\; 1\; 1\; 1\; 1\; 1\; 1\; 1\; 1\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 1\; 1$

Thank you for listening